Page 397 - Schaum's Outline of Differential Equations
P. 397

380                       ANSWERS TO SUPPLEMENTARY PROBLEMS



         CHAPTER   31

         31.16.  (a)  harmonic;  (b)  harmonic;  (c)  not  harmonic;  (d)  harmonic;  (e)  not harmonic

         31.17.  x  cos y +f(y),  where f(y)  is any differentiable  function  of y

         31.18.  sin y +f(x),  where f(x)  is any differentiable  function  of x

         31.19.  3^ + 4^+1
                2
         31.20.  x y + x + cosh y
         31.21.  — x 2  + xg(y)  + h(y),  where g(y)  and  h(y)  are  any  differentiable  functions  of y

                      2 4
         31.22.  u(x, y) = x y  + g(x)  + h(y),  where g(x)  is a differentiable  function  of x,  h(y)  is a differentiable  function  of y
                        2
         31.23.  u(x, y) = — x y  + g(x)  + xh(y),  where g(x)  is a differentiable  function  of x,  and  h(y)  is a differentiable  function  of y
         31.24.  u(x, t) = 5 sin 3x cos 3kt -  6 sin 8x cos 8kt




         CHAPTER   32


         32.22.  y = 0


         32.24.  y = sin x

         32.26.  y = B cos x, B  arbitrary           32.27.  No  solution

         32.28.  No  solution                        32.29.  y = x + B cos x, B  arbitrary

         32.30.  'k=l, y = c le- x                   32.31.  No eigenvalues  or  eigenfunctions





         32.33.  A,=  1, y = c 2e  x  (c 2  arbitrary)

                    2
         32.34.  X n = -n jf,  y n = A n  sin rim  (n = 1, 2, ...)  (A n  arbitrary)





                   2
         32.36.  X n = n , y n = B n cos nx (n = 1, 2,  ...)  (B n  arbitrary)
         32.37.  Yes                                 32.38.  No, p(x)  = sin  TK  is zero at x = +  1, 0.

         32.39.  No, p(x)  = sin x is zero at x = 0.  32.40.  Yes


         32.41.  No, the equation is not equivalent  to (29.6).  32.42.  No,  w(x)  =   s not continuous at x = 0.
   392   393   394   395   396   397   398   399   400   401   402