Page 284 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 284

CHAP. 11]                         INFINITE SERIES                               275


                        Thus, the approximation P 4 ð:3Þ for sin :3is correct to four decimal
                     places.
                        Additional insight to the process of approximation of functional
                     values results by constructing a graph of P 4 ðxÞ and comparing it to
                     y ¼ sin x. (See Fig. 11-2.)
                                                     x 3
                                           P 4 ðxÞ¼ x
                                                      6
                                                     ffiffiffi
                                                   p
                        The roots of the equation are 0;   6. Examination of the first and  Fig. 11-2
                                                                 ffiffiffi
                                                                p
                                                                 2 and a relative
                     second derivatives reveals a relative maximum at x ¼
                                    p ffiffiffi
                     minimum at x ¼  2. The graph is a local approximation of the sin
                     curve.  The reader can show that P 6 ðxÞ produces an even better approximation.
                        (For an example of series approximation of an integral see the example below.)
                     SOME IMPORTANT POWER SERIES
                        The following series, convergent to the given function in the indicated intervals, are frequently
                     employed in practice:
                                            3   5   7             2n 1
                                           x   x   x             x
                        1. sin x      ¼ x    þ       þ    ð 1Þ n 1     þ       1 < x < 1
                                           3!  5!  7!           ð2n   1Þ!
                                           x 2  x 4  x 6     n 1  x 2n 2
                        2. cos x      ¼ 1    þ       þ    ð 1Þ         þ       1 < x < 1
                                           2!  4!  6!           ð2n   2Þ!
                                              x 2  x 3      x n 1
                             x
                        3. e          ¼ 1 þ x þ  þ  þ     þ      þ           1 < x < 1
                                              2!  3!       ðn   1Þ!
                                           x 2  x 3  x 4     n 1  x n
                                           2   3   4            n
                        4. ln j1 þ xj  ¼ x    þ      þ    ð 1Þ    þ          1 < x @ 1
                                            3   5   7        2n 1
                                           x   x   x        x
                                1 þ x
                             ln
                        5.  1         ¼ x þ  þ   þ   þ     þ     þ            1 < x < 1
                            2   1   x      3   5   7       2n   1
                                            3   5   7            2n 1
                                           x   x   x         n 1  x
                               1
                        6. tan  x     ¼ x    þ       þ    ð 1Þ       þ        1 @ x @ 1
                                           3   5   7            2n   1
                                 p             pð p   1Þ  2   pð p   1Þ ... ð p   n þ 1Þ  n
                                                  2!                   n!
                        7. ð1 þ xÞ    ¼ 1 þ px þ      x þ     þ                  x þ
                        This is the binomial series.
                        (a)  If p is a positive integer or zero, the series terminates.
                        (b)  If p > 0 but is not an integer, the series converges (absolutely) for  1 @ x @ 1:
                            If  1 < p < 0, the series converges for  1 < x @ 1:
                        ðcÞ
                        (d)  If p @   1, the series converges for  1 < x < 1.
                        For all p the series certainly converges if  1 < x < 1.
                                                                                                  1
                                                                                                 ð
                                                                                                    2
                                                               x
                                                                                                    x
                     EXAMPLE.  Taylor’s Theorem applied to the series for e enables us to estimate the value of the integral  e dx.
                                                                            !                     0
                                                              4

                                                                     8
                                                                  6
                                                2    Ð  1    x   x  x   e  10
                                              1 x
                               2
                                             Ð
                     Substituting x for x,we obtain                       x  dx
                                             0  e dx ¼  0  1 þ x þ  2!  þ  3!  þ  4!  þ  5!
                     where
                                                                1  4  1  6  1  8
                                                                2!   3!    4!
                                                    P 4 ðxÞ¼ 1 þ x þ  x þ  x þ  x
                     and

                                                             e
                                                               10
                                                              x ;    0 <  < x
                                                             5!
                                                       R 4 ðxÞ¼
   279   280   281   282   283   284   285   286   287   288   289