Page 439 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 439

430                                                                         INDEX


                     Limits of functions (Cont.):  Mean value theorems:      Numbers (Cont.):
                       iterated, 119, 208          for derivatives, 72, 80–82, 87, 125,  negative, 1, 2
                       of a complex variable, 393, 399,  141                   operations with, 2–15
                        400                        for integrals, 93, 104, 112  positive, 1, 2
                       proofs of theorems on, 54–56  Measure zero, 91, 103     rational (see Rational numbers)
                       right- and left-hand, 45  Mechanics, 158                real (see Real numbers)
                       special, 46                 fluid, 402                   roots of, 3
                       theorems on, 45           Members, of a set, 1          transcendental, 6, 13
                     Limits of integration, 91   Minimum (see Maxima and     Numerator, 1
                     Limits of sequences, 23, 24, 25, 27  minima)            Numerical methods (see
                       definition of, 23          Moebius strip, 248              Approximations)
                       of functions, 45, 269     Moment of inertia, 101        for evaluating definite integrals,
                       theorems of, 23, 24, 28–30  polar, 213, 219               98, 108–110
                     Limits of vector functions, 156  Monotonic functions, 41
                     Limit superior, 32, 36      Monotonic sequences, 24, 30–32  Odd functions, 338, 347–351
                     Linear dependence of vectors, 182  fundamental theorem on, 24
                     Linear transformations, 148  Multiple integrals, 207–228  Open ball, 117
                       fractional (see Fractional linear  improper, 316      Open interval, 5
                                                                               region, 117
                        transformation)            in curvilinear coordinates, 211,  Operations:
                     Line integrals, 229–231, 238–240,  212, 221, 222
                        259                        in cylindrical coordinates, 211  with complex numbers, 6, 13, 14
                       evaluation of, 231          in spherical coordinates, 212  with power series, 372, 373
                                                                               with real numbers, 2, 8
                       independence of path of, 232, 238,  Jacobians and, 211
                        243–245                    transformations of, 211–213  Ordered pairs of real numbers, 7
                       properties of, 231        Multiple-valued functions, 39, 117,  triplets of real numbers, 155
                       relation of, to functions of a  392                   Order, exponential, 334
                                                                               of derivatives, 71
                        complex variable, 394      logarithm as a, 392
                       vector notation for, 230  Multiplication, 2             of poles, 395, 396
                     Line, normal (see Normal line)  associative law of, 2   Orientable surface, 248
                                                                             Origin, of a coordinate system, 116
                       tangent (see Tangent line)  involving vectors, 153–155
                     Logarithms, 4, 10, 11, 351    of complex numbers, 6, 7  Orthogonal curvilinear coordinates
                       as multiple-valued functions, 392  Multiply-connected regions, 117  (see Curvilinear coordinates)
                       base of, 4                                            Orthogonal families, 402, 403
                     Lower bound, 6, 12, 13                                    functions, 153, 342, 357, 358
                       of functions, 40          Natural base of logarithms, 3  Orthonormal functions, 357
                       of sequences, 24          Natural numbers, 4
                     Lower limit (see Limit inferior)  Negative integers, 1  Pappus’ theorem, 228
                     L.u.b. (see Least upper bound)  numbers, 1, 2           Parabola, 50
                                                 Neighborhoods, 6, 117       Parabolic cylindrical coordinates,
                                                 Nested intervals, 25, 32        180
                     Maclaurin series, 274       Newton, Isaac, 65, 90, 265  Parallelepiped, volume of, 155, 169
                     Magnetic field vector, 181     first and second laws, 68  Parallelogram, area of, 155, 168
                     Magnitude, of a vector, 150  Newton’s methods, 74         law, 151, 163
                     Many-valued function (see   Normal component of acceleration,  Parametric equations, of line, 189
                        Multiple-valued function)   177                        of normal line, 184
                     Mappings, 124 (See also     Normalized vectors and functions,  of space curve, 157
                        Transformations)            342                      Parseval’s identity:
                       conformal, 417            Normal line:                  for Fourier integrals, 366, 368
                     Mathematical induction, 8, 15  parametric equations for, 184, 201  for Fourier series, 338, 351, 362,
                     Maxima and minima, 42, 73, 174,  principal, 177, 180        373
                        185, 187, 196–198          to a surface, 184, 189–191  Partial derivatives, 116–149
                       absolute, 42              Normal plane, 184, 185, 191, 192  applications of, 183–206
                       Lagrange’s multiplier method for,  nth root test, 268   definition of, 120
                        188, 198, 199, 204       Null set, 1                   evaluation of, 120, 128–130
                       of functions of several variables,  vector, 151         higher order, 120
                        187, 188, 196–198        Number, cardinal, 5           notations for, 120
                       relative, 42              Numbers, 1–22                 order of differentiation of, 120
                       Taylor’s theorem and, 276, 277,  algebraic (see Algebraic number)  using Jacobians, 123
                        297, 298                   Bernoulli, 304            Partial sums of infinite series, 25,
                     Maximum (see Maxima and       complex (see Complex numbers)  265, 266
                        minima)                    history, 2, 5             Period, of a function, 336
                     Maxwell’s equations, 181      irrational (see Irrational numbers)  Piecewise continous, 48
                     Mean square error, 353        natural, 1                  differentiable, 66
   434   435   436   437   438   439   440   441   442