Page 207 - Schaum's Outline of Theory and Problems of Signals and Systems
P. 207

THE Z-TRANSFORM AND DISCRETE-TIME LTI SYSTEMS                  [CHAP. 4



                     Setting  z = 0 in  the above expression, we  have




                     Thus,
                                                    z        a z
                                                        +
                                           Y(z) = -              2      Izl> a
                                                   2-a     (z-a)
                     and from Table 4-1 we get



                     Thus, we obtain the same results as Eq. (2.135).
                 (b)  From  Prob. 2.29(b), x[n] and  h[nl are given by


                     From Table 4-1 and Eq. (4.75)








                                                       1        z                      1
                     Then       Y(z) =X(z) H(z) = - -                         a<lzl< -
                                                      a (z - a)(z - I/a)               a
                      Using partial-fraction  expansion, we have

                                  Y( z       1        1                     +"-)
                                  --  - --                     =--  -
                                    z       a (z-a)(z-a)            a  z-a     z-1/a
                                                       a               1            a
                     where       C,  = -

                     Thus,
                                                                                     1
                                             1
                                                           1
                                                                  z
                                                  Z
                                   Y(z)= -- -                               a<lzl<-
                                                      -
                                           1  -a2 Z-a    1  -a2 Z-  1/a             a
                      and from Table 4-1 we obtain





                     which is the same as Eq. (2.137).

           4.27.  Using the z-transform, redo Prob. 2.30.

                     From  Fig. 2-23 and definition (4.3)
                                      ~[n] (l,l,l,l] -X(z)    = 1 +z-' +z-2z-3
                                          =
                                      h[n] = (l,l, 1)  -H(z)   = 1 +z-' +z-*
   202   203   204   205   206   207   208   209   210   211   212