Page 443 - Schaum's Outline of Theory and Problems of Signals and Systems
P. 443

REVIEW OF MATRIX THEORY                             [APP.  A



               d.  Multiplication:
               Let A = [a,,],.,,   B = [bijInxp, and C = [cijImxp.
                                                           n
                                            C=AB =Cij=        aikbkj
                                                          k=l
           The matrix product AB is defined only when  the number of columns of A is equal to the number of
           rows of  B. In this case A and B are said to be  conformable.
           EXAMPLE A.2  Let





           Then

                                              0(1)+(-1)3    0(2)+(-I)(-1)
                                               1(1) + 2(3)
                                              2(1) + ( -3)3   2(2) + ( -3)(  - 1)

           but BA is not  defined.

           Furthermore, even if both AB and BA  are defined, in general
                                                   AB # BA

           EXAMPLE A.3  Let
                                            -;]     B  -;I
                                    A
                                  B=[;  [            -:I=[-:  A]
           Then

                                              2  0   -:I=[-:  -:]-
                                  .A=[:

           An example of the case where AB = BA follows.

           EXAMPLE A.4  Let
                                               1   0          2  0
                                          0        31    ~=[o 41

           Then                               AB=BA=[~


           Notes:

                1.  AO=OA=O
                2.  A1 = LA  = A
                3.  (A + B)C = AC + BC
                4.  A(B+C)=AB+AC
                5.  (AB)C = A(BC) = ABC
                6.  a(AB) = (aA)B = A(aB)
   438   439   440   441   442   443   444   445   446   447   448