Page 105 - Schaum's Outlines - Probability, Random Variables And Random Processes
P. 105

MULTIPLE  RANDOM  VARIABLES                       [CHAP  3







                 Thus,               ~(~+y<4)=1-~(~+~>4)=1-&=~




           CONTINUOUS  BIVARIATE  RANDOM  VARIABLES-PROBABILITY  DENSITY
           FUNCTIONS
           3.17.  The joint pdf of a bivariate r.v. (X, Y) is given by
                                                          o<x<2,o<y<2
                                             =  g(.
                                                          otherwise
                                     ,Ax.  ,  +
                 where k is a constant.
                 (a)  Find the value of k.
                 (b)  Find the marginal pdf's  of X and Y.
                 (c)  Are X and Y independent?












                    Thus k = $.
                 (b)  By Eq. (3.30), the marginal pdf of X is




                                                                      O<x<2
                                                       Y = o          otherwise
                    Since  fxy(x, y) is symmetric with respect to x and y, the marginal pdf of  Y is
                                              MY)={;(~+l)     O<Y<2
                                                               otherwise
                 (c)  Since fx,(x,  y) # fx(x) fy(y), X  and Y are not independent.


           3.18.  The joint pdf of a bivariate r.v. (X, Y) is given by
                                                        O<x<l,O<y<l
                                                        otherwise
                 where k is a constant.
                 (a)  Find the value of k.
                 (b)  Are X and Y independent?
                 (c)  Find P(X + Y < 1).
   100   101   102   103   104   105   106   107   108   109   110