Page 126 - Schaum's Outlines - Probability, Random Variables And Random Processes
P. 126

CHAP.  31                   MULTIPLE  RANDOM  VARIABLES



         3.57.   Let the joint pmf of (X, Y) be given by
                                                         xi = 1, 2, 3; yj = 1, 2
                                                  +
                                    Pxy(xi, Yj)  = {ri ~j)
                                                         otherwise
               where k is a constant.
               (a)  Find the value of k.
               (b)  Find the marginal pmf's  of X and  Y.
               Ans.  (a)  k  = &
                    (b)  px(xi) = &2xi  + 3)   xi = 1, 2, 3




         3.58.   The joint pdf of (X, Y) is given by
                                                            x > 0, y > 0
                                                            otherwise
               where k is a constant.
               (a)  Find the value of k.
               (b)  Find P(X > 1, Y < I),  P(X < Y), and P(X s 2).
               Ans.  (a)  k  = 2
                    (b)  P(X > 1, Y < 1) = e-'  - e-3 z 0.318; P(X < Y) = 4; P(X I 2) = 1  - e-2 z 0.865

         3.59.   Let  (X,  Y)  be  a  bivariate r.v.,  where X  is a  uniform r.v. over (0, 0.2) and  Y  is  an exponential r.v.  with
               parameter 5, and X and Y are independent.
               (a)  Find the joint pdf of (X, Y).
               (b)  Find P(Y 5 X).
                                         0 < x < 0.2, y > 0
               Ans.  (a)  fx&,  y) =
                                         otherwise


         3.60.   Let the joint pdf of (X, Y) be given by

                                                            otherwise
               (a)  Show that fxdx, y) satisfies Eq. (3.26).
               (b)  Find the marginal pdf's  of X and Y.
               Ans.  (b)  fx(x) = e-"   x>O
                               1
                       fr(y) = 0' Y>O

         3.61.   The joint pdf of (X, Y) is given by
                                                        x<y<2x,o<x<2
                                                        otherwise
               where k is a constant.
               (a)  Find the value of k.
               (b)  Find the marginal pdf's  of X and Y.
               Ans.  (a)  k  =
   121   122   123   124   125   126   127   128   129   130   131