Page 167 - Probability, Random Variables and Random Processes
P. 167

CHAP. 41  FUNCTIONS  OF RANDOM  VARIABLES, EXPECTATION,  LIMIT  THEOREMS          159



         4.72.   Let  X and  Y  be  independent r.v.3, each  uniformly distributed  over (0, 1).  Let  Z  = X + Y, W = X  - Y.
              Find the marginal pdf s of Z and W.
                                  O<z<l                 w+l    -l<w<O
                                   1  <z<2    f&w)=              O<w<l
                                  otherwise                      otherwise

         4.73.   Let  X  and  Y  be  independent  exponential  r.v.'s  with  parameters  a  and  B,  respectively. Find  the  pdf  of
              (a) Z  = X - Y; (b) Z  = X/Y; (c) Z = max(X, Y); (d) Z = min(X, Y).















        4.74.   Let X denote the number of  heads obtained  when  three independent tossings of  a fair coin are made. Let
              Y = X2. Find E(Y).
              Ans.  3

        4.75.   Let X be a uniform rev. over (-  1, 1). Let Y = Xn.
              (a)  Calculate the covariance of X and Y.
              (b)  Calculate the correlation coefficient of X and Y



                                         n = even                         n = even

        4.76.   Let the moment generating function of a discrete r.v. X be given by
                                         Mx(t) = 0.25et + 0.35e3' + 0.40e5'
              Find P(X = 3).
              Ans.  0.35

        4.77.   Let X be a geometric r.v. with parameter p.
              (a)  Determine the moment generating function of X.
              (b)  Find the mean of X for p = 3.

                              pet
              Ans.    Mx(t) = -
                             1 - qe'
        4.78.   Let X  be a uniform r.v. over (a, b).
              (a)  Determine the moment generating function of X.
              (b)  Using the result of (a), find E(X), E(X2), and E(X3).
                             erb  -
              Ans.  (a)  Mx(t) = ------
                             t(b - a)
                   (b)  E(X) = $(b + a), E(X2) = 4(b2 + ab + a2)   E(X3)  = $(b3 + b2a + ba2 + a3)
   162   163   164   165   166   167   168   169   170   171   172