Page 254 - Probability, Random Variables and Random Processes
P. 254

246               ANALYSIS  AND  PROCESSING  OF  RANDOM  PROCESSES            [CHAP  6



         6.69.   Let %(o) be the Fourier transform of a continuous-time random process X(t). Find the mean of X(o).

               Ans.  F[px(t)]  =   px(t)e-jot dt   where p,(t)  = E[X(t)]

         6.70.   Let




               where  E[X(n)] = 0 and  E[X(n)X(k)] = an2 6(n - k). Find  the  mean  and  the  autocorrelation function of
               W(a).
   249   250   251   252   253   254   255   256   257   258   259