Page 450 - Sensing, Intelligence, Motion : How Robots and Humans Move in an Unstructured World
P. 450

REFERENCES   425

             73. H. Choset, I. Konukseven, and J. Burdick. Mobile robot navigation: issues in
                implementating the generalized voronoi graph in the plane. In Proceedings of the
                IEEE/SICE/RSJ International Conference on Multisensor Fusion and Integration for
                Intelligent Systems, 1996.
             74. H. Choset, I. Konukseven, and J. Burdick. Sensor based planning for a planar
                rod robot. In Proceedings of the 1996 International Conference on Robotics and
                Automation, Minneapolis, MN, 1996.
             75. N. Rao, S. Iyenger, C. Jorgensen, and C. Weisbin. On terrain acquisition by a
                finite-sized mobile robot in plane. In Proceedings of the 1987 IEEE International
                Conference on Robotics and Automation, Raleigh, NC, May 1987.
             76. I. Kamon, E. Rimon, and E. Rivlin.  Range-sensor based navigation in three
                dimensions. In Proceedings of the IEEE International Conference on Robotics and
                Automation, Detroit, MI, 1999.
             77. V. Lumelsky and K. R. Harinarayan. Decentralized motion planning for mul-
                tiple mobile robots: The cocktail party model.  Autonomous Robots Journal
                4(1):121–135, 1997.
             78. D. T. Greenwood. Principles of Dynamics, Prentice-Hall, New York, 1965.
             79. Z. Shiller and H. H. Lu. Computation of path constrained time optimal motions
                along specified paths. ASME Journal of Dynamic Systems, Measurement and Control
                114(3):34–40, 1992.
             80. J. Bobrow. Optimal robot path planning using the minimum-time criterion. IEEE
                Journal of Robotics and Automation 4(4):443–450, August 1988.
             81. B. Donald and P. Xavier. A provably good approximation algorithm for optimal-
                time trajectory planning. In Proceedings of the IEEE International Conference on
                Robotics and Automation, Scottsdale, AZ, May 1989.
             82. Z. Shiller and S. Dubowsky. On computing the global time optimal motions of
                robotic manipulators in the presence of obstacles. IEEE Transactions on Robotics
                and Automation 7(6):785–797, 1991.
             83. C. O’Dunlaing. Motion planning with inertial constraints. Algorithmica 2(4):
                431–475, 1987.
             84. J. Canny, A. Rege, and J. Reif. An exact algorithm for kinodynamic planning in the
                plane. In Proceedings of the 6th Annual Symposium on Computational Geometry,
                Berkeley, CA, June 1990.
             85. O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. Inter-
                national Journal of Robotics Research 5(1):90–99, 1986.
             86. R. Volpe and P. Khosla. Artificial potential with elliptical isopotential contours for
                obstacle avoidance. In Proceedings of the 26th IEEE International Conference on
                Decision and Control, Los Angeles, 1987.
             87. D. Koditschek. Exact robot navigation by means of potential functions: Some topo-
                logical considerations. In Proceedings of the IEEE International Conference on
                Robotics and Automation, Raleigh, NC, May 1987.
             88. J. Barraquand, B. Langlois, and J. C. Latombe. Numerical potential fields techniques
                for robot path planning. IEEE Transactions on Systems, Man, and Cybernetics
                22(2):224–241, March 1992.
             89. C. De Medio and G. Oriolo. Robot Obstacle Avoidance Using Vortex Fields.In
                Advances in Robot Kinematics, S. Stifter and J. Lenarcic, eds, Springer-Verlag,
                New York, 1991.
   445   446   447   448   449   450   451   452   453   454   455