Page 229 -
P. 229

226                                                     A. Evans et al.

            Fleming, L., & Sorenson, O. (2001). Technology as a complex adaptive system: Evidence from
              patent data. Research Policy, 30, 1019–1039.
            Foote, J., & Cooper, M. (2001). Visualising music structure and rhythm via self-similarity. In
              Proceedings of the international computer music conference, ICMC’01, Havana, Cuba (pp.
              419–422). San Francisco: ICMA.
            Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2002). Geographically weighted regression:
              The analysis of spatially varying relationships. Chichester: Wiley.
            Gahegan, M. (2001). Visual exploration in geography: Analysis with light. In H. J. Miller & J. Han
              (Eds.), Geographic data mining and knowledge discovery (pp. 260–287). London: Taylor &
              Francis.
            Gehlke, C. E., & Biehl, H. (1934). Certain effects of grouping upon the size of correla-
              tion coefficients in census tract material. Journal of the American Statistical Association,
              29(Supplement), 169–170.
            Getis, A. (2007). Reflections on spatial autocorrelation. Regional Science and Urban Economics,
              37(4), 491–496.
            Granger, C. W. J. (1980). Testing for causality: A personal viewpoint. Journal of Economic
              Dynamics and Control, 2, 329–352.
            Graps, A. (2004). Amara’s wavelet page. http://www.amara.com/current/wavelet.html
            Greenland, S., & Pearl, J. (2006). Causal diagrams (Technical report, R-332). Los Angeles: UCLA
              Cognitive Systems Laboratory. http://ftp.cs.ucla.edu/pub/stat_ser/r332.pdf
            Grimm, V. (1999). Ten years of individual-based modelling in ecology: What have we learned and
              what could we learn in the future? Ecological Modelling, 115(2), 129–148.
            Grimm, V. (2002). Visual debugging: A way of analyzing, understanding, and communicating
              bottom-up simulation models in ecology. Natural Resource Modelling, 15, 23–38.
            Grimm, V., et al. (2006). A standard protocol for describing individual-based and agent-based
              models. Ecological Modelling, 198(1–2), 115–126.
            Haining, R. (1990). Spatial data analysis in the social and environmental sciences. Cambridge:
              Cambridge University Press.
            Heppenstall, A. J., Evans, A. J., & Birkin, M. H. (2006). Using hybrid agent-based systems to
              model spatially-influenced retail markets. Journal of Artificial Societies and Social Simulation,
              9(3). http://jasss.soc.surrey.ac.uk/9/3/2.html
            Heppenstall, A. J., Evans, A. J., & Birkin, M. H. (2007). Genetic algorithm optimisation of a multi-
              agent system for simulating a retail market. Environment and Planning B: Urban Analytics and
              City Science, 34(6), 1051–1070.
            Hinneburg, A., Keim, D. A., & Wawryniuk, M. (1999). HD-eye: Visual mining of high-
              dimensional data. IEEE Computer Graphics and Applications, 19(5), 22–31.
            Hipp, J., Güntzer, U., & Nakhaeizadeh, G. (2002). Data mining of association rules and the process
              of knowledge discovery in databases. In P. Perner (Ed.), Advances in data mining. (Lecture
              Notes in Computer Science, 2394) (pp. 207–226). Berlin: Springer.
            Isaaks, E. H., & Srivastava, R. M. (1990). Applied geostatistics. North Carolina: Oxford University
              Press USA.
            Kantz, H., & Schreiber, T. (1997). Non-linear time series analysis. Cambridge: Cambridge
              University Press.
            Knudsen, D. C., & Fotheringham, A. S. (1986). Matrix comparison, goodness-of-fit, and spatial
              interaction modelling. International Regional Science Review, 10, 127–147.
            Korie, S., et al. (1998). Analysing maps of dispersal around a single focus. Environmental and
              Ecological Statistics, 5(4), 317–344.
            Marwan, N., & Kruths, J. (2002). Nonlinear analysis of bivariate data with cross recurrence plots.
              Physics Letters A, 302(5–6), 299–307.
            Marwan, N., Wessel, N., Meyerfeldt, U., Schirdewan, A., & Kurths, J. (2002). Recurrence-plot-
              based measures of complexity and their application to heart-rate-variability data. Physical
              Review E, 66(2), 026702.
            McGarigal, K. (2002). Landscape pattern metrics. In A. H. El-Shaarawi & W. W. Piegorsch (Eds.),
              Encyclopedia of environmentrics (Vol. 2, pp. 1135–1142). Chichester: Wiley.
   224   225   226   227   228   229   230   231   232   233   234