Page 12 -
P. 12

Contents xi

            4.1.4  Large-N limit in the grand canonical ensemble  200
            4.1.5  Differences between ensembles—fluctuations     205
            4.1.6  Homogeneous Bose gas                         206
        4.2  The idealBose gas (density matrices)               209
            4.2.1  Bosonic density matrix                       209
            4.2.2  Recursivecounting ofpermutations             212
            4.2.3  Canonical partitionfunction ofideal bosons   213
            4.2.4  Cycle-length distribution, condensate fraction  217
            4.2.5  Direct-sampling algorithm forideal bosons    219
            4.2.6  Homogeneous Bose gas, winding numbers        221
            4.2.7  Interacting bosons                           224
        Exercises                                               225
        References                                              227

     5 Order and disorder in spin systems                      229
        5.1  The Ising model—exact computations                 231
            5.1.1  Listing spin configurations                   232
            5.1.2  Thermodynamics, specific heat capacity,and mag-
                   netization                                   234
            5.1.3  Listing loopconfigurations                    236
            5.1.4  Counting (not listing)loops in two dimensions  240
            5.1.5  Densityof states fromthermodynamics          247
        5.2  The Ising model—Monte Carlo algorithms             249
            5.2.1  Local sampling methods                       249
            5.2.2  Heat bath and perfect sampling               252
            5.2.3  Cluster algorithms                           254
        5.3  Generalized Ising models                           259
            5.3.1  The two-dimensional spin glass               259
            5.3.2  Liquids as Ising-spin-glass models           262
        Exercises                                               264
        References                                              266

     6 Entropic forces                                         267
        6.1  Entropic continuummodelsand mixtures               269
            6.1.1  Randomclothes-pins                           269
            6.1.2  The Asakura–Oosawadepletioninteraction       273
            6.1.3  Binary mixtures                              277
        6.2  Entropic lattice model:dimers                      281
            6.2.1  Basic enumeration                            281
            6.2.2  Breadth-first and depth-first enumeration      284
            6.2.3  Pfaffian dimer enumerations                    288
            6.2.4  Monte Carlo algorithms forthe monomer–dimer
                   problem                                      296
            6.2.5  Monomer–dimer partitionfunction              299
        Exercises                                               303
        References                                              305

     7 Dynamic Monte Carlo methods                             307
   7   8   9   10   11   12   13   14   15   16   17