Page 137 -
P. 137

124 Hard disks and spheres


                                                procedure naive-avalanche
                                                input {x 1 ,..., x N }
                                                k ← nran(1,N)
                                                δ ←{ran(−δ, δ) , ran(−δ, δ)}
                                                construct move (involving disks {k 1 ,... ,k M })
                                                if (movehas singleterminal disk)then

                                                    for l =1,... ,M do

                                                                 + δ
                                                        x k l  ← x k l
                                                output {x 1 ,... , x N }
                                                ——
                                       Algorithm 2.17 naive-avalanche. Avalanche cluster algorithm for
                                       hard disks, with a low acceptance rate unless |δ| is small.

                                     concreteness, wesuppose that avalanches must be connected and that
                                     they must have a certain disk l in common.Under this condition, there








                                             disk l



                                                 k = 1  k = 2  k = 3  k = 4  k = 5  k = 6




                                                 k = 7  k = 8  k = 9  k = 10  k = 11  k = 12

                                       Fig. 2.49 The move a → b, and all avalanches containing the disk l for
                                       a displacement δ. The avalanche k = 1 realizes the move.

                                     are now 12connected avalanches containing disk l (see Fig. 2.49). This
                                     means that the a priori probabilityofselecting the frame k =1,rather
                                     than another one, is 1/12.Asinthe studyof the trianglealgorithm, the
                                     use ofapriori probabilities obliges usto analyze the return move.Inthe
                                     configuration b of Fig. 2.48, with a return displacement −δ, 10 connected
                                     avalanches contain disk l, of which one (the frame k = 8) realizes the
                                     return move (see Fig. 2.50). The a priori probabilityofselecting this
                                     return moveis 1/10. Wethus arriveat

                                                           1     one ofthe 12avalanches
                                               A(a → b)=                                ,
                                                           12         in Fig. 2.49

                                                           1     one ofthe 10 avalanches
                                               A(b → a)=                                .
                                                           10         in Fig. 2.50
                                     These a priori probabilities must be entered into the detailed-balance
   132   133   134   135   136   137   138   139   140   141   142