Page 116 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 116

The vectorial case                                                103

                Returningto(3.9) we have
                              ZZ                 ZZ
                                                     £              ¤
                                  det ∇wv dxdy +      ϕψ v x − ϕψ v y dxdy
                                                         y
                                                                 x
                                 Ω                  Ω
                              ZZ                  ZZ  £               ¤





                           =      det ∇w vdxdy +       ϕ ψ v x − ϕ ψ v y dxdy
                                                          y        x
                                 Ω                  Ω
                                ZZ

                              +     (det ∇w − det ∇w ) vdxdy
                                   Ω
                                ZZ
                                    £¡             ¢                 ¤
                              +       ϕψ − ϕ ψ  y  v x − (ϕψ − ϕ ψ ) v y dxdy .
                                         y
                                                          x
                                                                 x
                                   Ω


                                                                                   2

                Appealing to (3.9) which has already been proved to hold for w =(ϕ ,ψ ) ∈ C ,
                to Hölder inequality, to (3.12) and to (3.13) we find that, α 3 being a constant
                independent of  ,
                               ¯ZZ                ZZ                      ¯
                               ¯                      £              ¤    ¯
                                   det ∇w v dxdy +     ϕψ v x − ϕψ v y dxdy
                               ¯                                          ¯
                                                          y
                                                                  x
                               ¯                                          ¯
                                  Ω                 Ω
                                  h                          i
                           ≤ α 3   kvk (L p/2 + kv x k L p 0 + kv y k L p 0 .
                                          )
                                           0
                Since   is arbitrary we have indeed obtained that (3.9) is also valid for w ∈
                    ¡
                          ¢
                         2
                W 1,p  Ω; R .
                   Step 3. We are finally in a position to prove the lemma, removing the last
                unnecessary hypothesis (v ∈ C ∞  (Ω)). We want (3.8) to hold for v ∈ L p/(p−2) .
                                           0
                This is obtained by regularizing the function as in Theorem 1.13. This means,

                for every  > 0 and v ∈ L p/(p−2) ,thatwecan find v ∈ C 0 ∞  (Ω) so that

                                         kv − v k L p/(p−2) ≤  .                (3.14)
                We moreover have
                  ZZ                  ZZ                        ZZ


                                                                          ν
                            ν
                                                ν
                      det ∇u vdxdy =      det ∇u (v − v ) dxdy +    det ∇u v dxdy .
                     Ω                  Ω                         Ω
                Using, once more, Hölder inequality we find
                                      ¯ZZ                     ¯
                                      ¯           ν           ¯
                                            (det ∇u − det ∇u) v
                                      ¯                       ¯
                                      ¯                       ¯
                                          Ω
                                                         ¯ZZ                     ¯
                                                         ¯                       ¯
                                         ν                           ν
                                                                                  ¯
                  ≤ kv − v k L p/(p−2) kdet ∇u − det ∇uk L p/2 +  ¯  (det ∇u − det ∇u) v .
                                                         ¯
                                                             Ω                   ¯
                The previous step has shown that
                                       ¯ZZ                    ¯
                                       ¯          ν           ¯
                                   lim  ¯  (det ∇u − det ∇u) v    ¯  =0
                                       ¯                      ¯
                                  ν→∞
                                          Ω
   111   112   113   114   115   116   117   118   119   120   121