Page 164 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 164

Nonparametric minimal surfaces                                    151

                We deduce from (5.22) and (5.24) (since (5.25) holds for every 1 ≤ j ≤ ν)that

                             ku j+1 − u j k ≤ K ku j − u j−1 k ≤ K j−1  ku 2 − u 1 k .

                Returning to (5.27), we find
                                               ν
                                              X    j−1           1
                      ku ν+1 k ≤ ku 1 k + ku 2 − u 1 k  K  ≤ ku 1 k +  ku 2 − u 1 k .
                                                               1 − K
                                              j=1
                Appealing to (5.23) and then to (5.26), we obtain
                                        Ã            !
                                               2    2       µ       4 2  ¶
                                              C ku 1 k            C
                           ku ν+1 k ≤ ku 1 k 1+         ≤ C  1+          ,
                                               1 − K              1 − K
                which is exactly (5.25). The theorem then follows.

                5.5.1   Exercises

                                         ¡   ¢
                                            2
                Exercise 5.5.1 Let u ∈ C 2  R , u = u (x, y), be a solution of the minimal
                surface equation
                                  ¡    2  ¢               ¡    2  ¢
                            Mu = 1+ u    u xx − 2u x u y u xy + 1+ u  u yy =0 .
                                       y                       x
                                                          ¡  ¢
                                                            2
                Show that there exists a convex function ϕ ∈ C 2  R , so that
                              1+ u 2 x             u x u y            1+ u 2 y
                     ϕ xx  = q         ,ϕ xy  = q          ,ϕ yy  = q          .
                                                                         2
                                 2
                                                     2
                             1+ u + u 2          1+ u + u 2          1+ u + u 2
                                 x    y              x    y              x    y
                Deduce that
                                          ϕ ϕ    − ϕ 2 xy  =1 .
                                           xx yy
   159   160   161   162   163   164   165   166   167   168   169