Page 91 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 91

78                                                    Classical methods

                          (i) Show that if there exists an exact field Φ covering D,then

                                           S x + H (x, u, S u )= 0, ∀ (x, u) ∈ D

                       where
                                   S u (x, u)= f ξ (x, u, Φ (x, u))
                                    S x (x, u)= f (x, u, Φ (x, u)) − S u (x, u) Φ (x, u) .

                          (ii) Conversely if the Hamilton-Jacobi equation has a solution for every
                       (x, u) ∈ D,prove that
                                             Φ (x, u)= H v (x, u, S u (x, u))

                       is an exact field for f covering D.
   86   87   88   89   90   91   92   93   94   95   96