Page 362 - Thomson, William Tyrrell-Theory of Vibration with Applications-Taylor _ Francis (2010)
P. 362

Sec. 11.1   Mode-Summation Method                              349

                              cf)^(x) is       the quantity

                                                 A ( 0   =  " ,/V (i) sin 0^,(1  -  O    (11.1-17)

                              can be called the  dynamic load factor  for the  ith mode.
                              Example  11.1-1
                                   A simply supported uniform beam of mass  Mqis suddenly loaded by the force shown

                                   in  Fig.  11.1-2.  Determine the equation of motion.
                              Solution:  The  normal modes of the beam  are
                                                       (/>„(x)  =  V2  sm —^

                                                          co„  =  {n^fy/EI/M,l^
                                   and  the generalized mass is

                                                      w         •  iniTX  .
                                                        =  -j- j  2sm^—j— dx  = Mq
                                   The  generalized force  is

                                         j'^p{x,t)4>„{x) dx = g(t)J^^^^]/2  sin   dx
                                                             0
                                                            n>ov/2  sm(mrx/l)   x cos {mrx/l)
                                                       = 8i‘)                    rnr/l

                                                         -SKt)  „„  cosnir

                                                           \/2/w'o

                                  where  g{t) is the time history of the load. The equation for   is then





                                                                       g{t)

                                                                       1.0   —

                                                                        0
                                                                               (b)
   357   358   359   360   361   362   363   364   365   366   367