Page 399 - Thomson, William Tyrrell-Theory of Vibration with Applications-Taylor _ Francis (2010)
P. 399

386                                       Classical Methods   Chap. 12





                                                                     Figure  12.3-1.
                              Solution:  For  the  displacement  function,  we  choose  the  first  two  longitudinal  modes  of a
                                  uniform  rod clamped  at one  end.
                                                      .  .    .   7TX   .   3 ttx
                                                     u{x)  =  Cj sm   +  C2 sm  2/
                                                                      /
                                                         =  Cj(/)j(x)  +  C2<>2(-^)          (a)
                                  The  mass per unit  length  and the stiffness at  x  are
                                            m{x)  =    -   y j   and   EA(x)  = Ea J^I  -   y j

                                  The   and  the   for the  longitudinal modes  are calculated from  the  equations
                                   k , j =   j ' ^ E A { x ) 4 > ] 4 > ] d x


                                  mi,= j ' m { x ) < ! > j 4 > j d x

                                    "   4/   0          2 1 ^    2/ ( 8 2 )
                                            EA,
                                     = 0.86685
                                              I
                                                  X \   77X   3tTX  ,   EA,
                                  kn = ^ E A  4 ' - î  COS -7^ cos ~Yj- dx = 0.750  I        (b)
                                       4/2
                                    '2
                                                       23 ttx  .  _  ^-^0 / 97t^   J_\

                                     = - ^ E A      cos  2/  dx  2/ \ 8 ^ 2 j
                                       4r     0
                                            E^{)
                                     = 5.80165
                                  mil   '^0/    ~ 7 )   ^  ^   ----^  j   0.148679mQ/
                                                        3 tTX  ,
                                                   TTX  .
                                              X \   .
                                  mi2 = miij   -   y  j sm -yy sm 2/ ^   ,/  1 \  ^
                                                                   —2 I ^ 0.101321 mo/
                                  n iji =  ^ { ) j   (^ “ 7  )   ~ 7 ~  ^  ^   ~   j  ^ 0.238742mo/
                                  Substituting into Eq.  (12.3-7), we  obtain

                                     |o .8 6 6 8 5 ^   -   0.14868wo/t^^j   |o . 7 5 0 ^   -  0.10132/n„/i^^)

                                     (o .7 5 0 -^   -   0.10132m„/o>^j   (5 .8 0 1 6 5 ^   -   0.23874mo/a)^j
                                                                                             (c)
   394   395   396   397   398   399   400   401   402   403   404