Page 512 - Thomson, William Tyrrell-Theory of Vibration with Applications-Taylor _ Francis (2010)
P. 512

Appen. C.2   Matrices                                         499


                                  Unit matrix.  The  unit matrix
                                                             1  0  0
                                                        I =  0  1  0
                                                             0  0  1
                              is  a square  matrix in which  the  diagonal  elements  from  the  top  left  to  the  bottom
                              right are unity with all other elements equal to zero.
                                  Diagonal  matrix.  A square  matrix  having elements  a^^  along the  diagonal
                              with  all other elements equal  to zero  is  a diagonal matrix.
                                                            «11  0    0
                                                             0  «22   0
                                                             0   0   «33

                                  Transpose.  The transpose   of a matrix  A  is one  in which  the rows and
                              columns are  interchanged.  For example,
                                                                        ■«11  ^21
                                             A  -                       «12  ^22
                                                       ^22  ^23
                                                                        «13  ^23
                              The  transpose of a column  matrix is  a row matrix.


                                                    -             =  ['^l-^2'^3]



                                                    -
                                  Minor.  A minor  M^ of a  matrix  A  is  formed  by  deleting the  iih  row  and
                              the jth column from the determinant of the original matrix.
                                                             «11  «12  «13
                                                    Let  A   «21  «22  «23
                                                             «31  «32  «33
                                                     «11  «12  «13
                                                 M. «21  «22  «23 =  «21  ^23
                                                                    «31
                                                     «31  «32  «33
                                  Cofactor.  The  cofactor   is equal  to the  signed minor ( -    From
                              the previous example,



                                  Adjoint matrix.  An  adjoint  matrix of a  square  matrix  A  is  a  transpose  of
                              the  matrk of cofactors of  A.
   507   508   509   510   511   512   513   514   515   516   517