Page 272 - Thermal Hydraulics Aspects of Liquid Metal Cooled Nuclear Reactors
P. 272
242 Thermal Hydraulics Aspects of Liquid Metal Cooled Nuclear Reactors
Craske, J., van Reeuwijk, M., 2013. Robust and accurate open boundary conditions for incom-
pressible turbulent jets and plumes. Comput. Fluids 18 (86), 284–297.
Errico, O., Stalio, E., 2014. Direct numerical simulation of turbulent forced convection in a
wavy channel at low and order one Prandtl number. Int. J. Therm. Sci. 86, 374–386.
Errico, O., Stalio, E., 2015. Direct numerical simulation of low-Prandtl number turbulent con-
vection above a wavy wall. Nucl. Eng. Des. 290, 87–98.
Flageul, C., Tiselj, I., 2017. Impact of unresolved smaller scales on the scalar dissipation rate in
direct numerical simulations of wall bounded flows. Int. J. Heat Fluid Flow 68, 173–179.
Flageul, C., Benhamadouche, S., Lamballais, E., Laurence, D., 2015. DNS of turbulent channel
flow with conjugate heat transfer: effect of thermal boundary conditions on the second
moments and budgets. Int. J. Heat Fluid Flow 55, 34–44.
Fletcher, C.A.J., 1991. second ed. Computational Techniques for Fluid Dynamics, vol. 1 and 2.
Springer, Berlin.
Galantucci, L., Quadrio, M., 2010. Very fine near-wall structures in turbulent scalar mixing. Int.
J. Heat Fluid Flow 31, 499–506.
Govindha Rasu, N., Velusamy, K., Sundararajan, T., Chellapandi, P., 2014. Simultaneous
development of flow and temperature fields in wire-wrapped fuel pin bundles of sodium
cooled fast reactor. Nucl. Eng. Des. 267, 44–60.
Gray, D., Giorgini, A., 1976. The validity of the Boussinesq approximation for liquids and
gases. Int. J. Heat Mass Transf. 19, 545–551.
Hattori, T., Norris, S.E., Kirkpatrick, M.P., Armfield, S.W., 2013. Comparison of non-reflective
boundary conditions for a free-rising turbulent axisymmetric plume. Int. J. Numer.
Methods Fluids 72, 1307–1320.
Hoyas, S., Jimenez, J., 2006. Scaling of the velocity fluctuations in turbulent channels up to
Re tau ¼2003. Phys. Fluids 18, 011702.
Jaeger, W., Hahn, T.S., Hering, W., Otic, I., Shams, A., Oder, J., Tiselj, I., 2017. Design and pre-
evaluation of a backward facing step experiment with liquid metal coolant. In: The 17th
International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Xi An, China.
Jimenez, J., 2017. DNS Database. UPM. Available from: http://torroja.dmt.upm.es/ftp/
channels/data/ (Accessed January 2017).
Jimenez, J., Moin, P., 1991. The minimal flow unit in near-wall turbulence. J. Fluid. Mech.
225, 213–240.
Kasagi, N., Iida, O., 1999. Progress in direct numerical simulation of turbulent heat transfer.
In: Proceedings of the 5th ASME/JSME Joint Thermal Engineering Conference. American
Society of Mechanical Engineers, San Diego, USA.
Kasagi, N., Tomita, Y., Kuroda, A., 1992. Direct numerical simulation of passive scalar field in
a turbulent channel flow. J. Heat Transf. Trans. ASME 114, 598–606.
Kawamura, H., 2017. DNS database. Tokyo University of Science. Available from: http://
murasun.me.noda.tus.ac.jp/turbulence/poi/poi.html (Accessed January 2017).
Kawamura,H.,Ohsaka,K.,Abe,H.,Yamamoto,K.,1998.DNSofturbulentheattransferinchan-
nelflowwithlow tomedium-highPrandtlnumber fluid.Int.J.HeatFluidFlow19,482–491.
Kim, J., Moin, P., 1989. Transport of passive scalars in a turbulent channel flow. In: Turbulent
Shear Flows VI, Springer-Verlag, Berlin, p. 85.
Laizet, S., Lamballais, E., Vassilicos, J.C., 2010. A numerical strategy to combine high-order
schemes, complex geometry and parallel computing for high resolution DNS of fractal
generated turbulence. Comput. Fluids 39 (3), 471–484.