Page 272 - Thermal Hydraulics Aspects of Liquid Metal Cooled Nuclear Reactors
P. 272

242                   Thermal Hydraulics Aspects of Liquid Metal Cooled Nuclear Reactors

         Craske, J., van Reeuwijk, M., 2013. Robust and accurate open boundary conditions for incom-
             pressible turbulent jets and plumes. Comput. Fluids 18 (86), 284–297.
         Errico, O., Stalio, E., 2014. Direct numerical simulation of turbulent forced convection in a
             wavy channel at low and order one Prandtl number. Int. J. Therm. Sci. 86, 374–386.
         Errico, O., Stalio, E., 2015. Direct numerical simulation of low-Prandtl number turbulent con-
             vection above a wavy wall. Nucl. Eng. Des. 290, 87–98.
         Flageul, C., Tiselj, I., 2017. Impact of unresolved smaller scales on the scalar dissipation rate in
             direct numerical simulations of wall bounded flows. Int. J. Heat Fluid Flow 68, 173–179.
         Flageul, C., Benhamadouche, S., Lamballais, E., Laurence, D., 2015. DNS of turbulent channel
             flow with conjugate heat transfer: effect of thermal boundary conditions on the second
             moments and budgets. Int. J. Heat Fluid Flow 55, 34–44.
         Fletcher, C.A.J., 1991. second ed. Computational Techniques for Fluid Dynamics, vol. 1 and 2.
             Springer, Berlin.
         Galantucci, L., Quadrio, M., 2010. Very fine near-wall structures in turbulent scalar mixing. Int.
             J. Heat Fluid Flow 31, 499–506.
         Govindha Rasu, N., Velusamy, K., Sundararajan, T., Chellapandi, P., 2014. Simultaneous
             development of flow and temperature fields in wire-wrapped fuel pin bundles of sodium
             cooled fast reactor. Nucl. Eng. Des. 267, 44–60.
         Gray, D., Giorgini, A., 1976. The validity of the Boussinesq approximation for liquids and
             gases. Int. J. Heat Mass Transf. 19, 545–551.
         Hattori, T., Norris, S.E., Kirkpatrick, M.P., Armfield, S.W., 2013. Comparison of non-reflective
             boundary conditions for a free-rising turbulent axisymmetric plume. Int. J. Numer.
             Methods Fluids 72, 1307–1320.
         Hoyas, S., Jimenez, J., 2006. Scaling of the velocity fluctuations in turbulent channels up to
             Re tau ¼2003. Phys. Fluids 18, 011702.
         Jaeger, W., Hahn, T.S., Hering, W., Otic, I., Shams, A., Oder, J., Tiselj, I., 2017. Design and pre-
             evaluation of a backward facing step experiment with liquid metal coolant. In: The 17th
             International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Xi An, China.
         Jimenez, J., 2017. DNS Database. UPM. Available from: http://torroja.dmt.upm.es/ftp/
             channels/data/ (Accessed January 2017).
         Jimenez, J., Moin, P., 1991. The minimal flow unit in near-wall turbulence. J. Fluid. Mech.
             225, 213–240.
         Kasagi, N., Iida, O., 1999. Progress in direct numerical simulation of turbulent heat transfer.
             In: Proceedings of the 5th ASME/JSME Joint Thermal Engineering Conference. American
             Society of Mechanical Engineers, San Diego, USA.
         Kasagi, N., Tomita, Y., Kuroda, A., 1992. Direct numerical simulation of passive scalar field in
             a turbulent channel flow. J. Heat Transf. Trans. ASME 114, 598–606.
         Kawamura, H., 2017. DNS database. Tokyo University of Science. Available from: http://
             murasun.me.noda.tus.ac.jp/turbulence/poi/poi.html (Accessed January 2017).
         Kawamura,H.,Ohsaka,K.,Abe,H.,Yamamoto,K.,1998.DNSofturbulentheattransferinchan-
             nelflowwithlow tomedium-highPrandtlnumber fluid.Int.J.HeatFluidFlow19,482–491.
         Kim, J., Moin, P., 1989. Transport of passive scalars in a turbulent channel flow. In: Turbulent
             Shear Flows VI, Springer-Verlag, Berlin, p. 85.
         Laizet, S., Lamballais, E., Vassilicos, J.C., 2010. A numerical strategy to combine high-order
             schemes, complex geometry and parallel computing for high resolution DNS of fractal
             generated turbulence. Comput. Fluids 39 (3), 471–484.
   267   268   269   270   271   272   273   274   275   276   277