Page 9 - Thermal Hydraulics Aspects of Liquid Metal Cooled Nuclear Reactors
P. 9
viii Contents
6.2.1 Turbulent heat transport 273
A. Shams
6.2.1.1 Understanding the peculiarities of heat transfer
modeling in turbulent liquid metal flows 275
6.2.1.2 Modeling of turbulent heat transfer 278
6.2.1.3 Summary 288
References 289
Further reading 292
6.2.2 Simulation of flow-induced vibrations in tube bundles
using URANS 293
J. De Ridder, L. De Moerloose, K. Van Tichelen,
J. Vierendeels, J. Degroote
6.2.2.1 Introduction 293
6.2.2.2 Instability-induced vibration: Vortex-induced vibrations
by axial flow in a bundle of tubes 294
6.2.2.3 Movement-induced vibration 301
6.2.2.4 Conclusions 308
Acknowledgment 308
References 309
6.2.3 Core thermal hydraulics 311
F. Roelofs, I. Di Piazza, E. Merzari
6.2.3.1 Introduction 311
6.2.3.2 Experiments and correlations 313
6.2.3.3 Simulation of operational behavior 315
6.2.3.4 Simulation of accidental conditions 326
6.2.3.5 CFD and chemical reactions simulation 332
6.2.3.6 Summary 333
References 335
Further reading 340
6.2.4 (U)RANS pool thermal hydraulics 341
L. Koloszar, V. Moreau
6.2.4.1 Identification of the relevant physics 342
6.2.4.2 MYRRHA operating condition case as the
quintessence of the pool modeling application 343
6.2.4.3 A look behind the curtains 353
6.2.4.4 Closing thoughts 357
References 358
7 Multi-scale simulations of liquid metal systems 361
A. Gerschenfeld, N. Forgione, J. Thomas
7.1 Introduction and motivation 361
7.2 Multi-scale coupling algorithms 366
7.3 Development and validation of multi-scale approaches 375
7.4 Conclusion 381
References 381