Page 48 - Bird R.B. Transport phenomena
P. 48

§1.6  Viscosity  of Suspensions  and Emulsions  33

                    Another  approach  for  concentrated  suspensions  of  spheres  is  the  "cell  theory/'  in
                which one examines  the dissipation  energy  in the "squeezing  flow"  between  the spheres.
                As  an example  of this kind  of  theory we  cite the Graham equation 8
                                     Meff  1  ,  5  .  ,  9 (  1    \                n  , ~,
                                     -ГГ-  = 1 + -  ф + -                              (1.6-3)
                in  which  ф  =  2[1  -  ^Ф/ф )/^Ф/Ф \,  where  ф  т а х  is  the  volume  fraction  corre-
                                                тах
                                       тах
                sponding  to the experimentally  determined  closest  packing  of  the spheres.  This  expres-
                                                                                     9
                sion  simplifies  to Einstein's equation  for  ф  —> 0 and the Frankel-Acrivos  equation  when
                Ф ""* Фтах-
                    For  concentrated suspensions  of nonspherical particles,  the  Krieger-Dougherty equation 10
                can be  used:



                The parameters  A  and  ф тах  to be used  in  this equation are tabulated  11  in Table  1.6-1  for
                suspensions  of several  materials.
                    Non-Newtonian  behavior  is  observed  for  concentrated suspensions,  even  when  the
                suspended  particles  are spherical. 11  This means  that the viscosity  depends  on the  veloc-
                ity gradient  and may  be  different  in a shear  than  it is  in an elongational  flow.  Therefore,
                equations such as  Eq.  1.6-2  must be used  with  some caution.



                Table 1.6-1  Dimensionless Constants for  Use in Eq.  1.6-4
                System                     A     Фтах    Reference

                Spheres (submicron)       2.7    0.71       a
                Spheres  (40 /xm)         3.28   0.61       b
                Ground  gypsum            3.25   0.69       с
                Titanium  dioxide         5.0    0.55       с
                Laterite                  9.0    0.35       с
                Glass rods  (30 X 700 /im)  9.25  0.268     d
                Glass plates  (100  X 400 /xm)  9.87  0.382  d
                Quartz grains  (53-76 /xm)  5.8  0.371      d
                Glass fibers  (axial ratio 7)  3.8  0.374   b
                Glass fibers  (axial ratio 14)  5.03  0.26  b
                Glass fibers  (axial ratio 21)  6.0  0.233  b
                0  С  G. de Kruif, E. M. F. van  Ievsel,  A. Vrij, and  W.  B. Russel,  in
                Viscoelasticity and Rheology (A. S. Lodge,  M. Renardy, J. A. Nohel,
                eds.), Academic  Press, New York  (1985).
                '' H. Giesekus, in Physical Properties of Foods (J. Jowitt et al., eds.),
                Applied  Science Publishers  (1983), Chapter 13.
                 R. M. Turian and T.-F. Yuan,  AIChE  Journal, 23, 232-243  (1977).
                r
                y
                '  B. Clarke, Trans. Inst.  Chem.  Eng., 45, 251-256 (1966).


                    s
                     A.  L. Graham, Appl. Sci. Res., 37, 275-286  (1981).
                    4
                     N. A. Frankel and  A. Acrivos,  Chem.  Engr. Sci., 22, 847-853  (1967).
                    1 0 1.  M. Krieger and T. J. Dougherty, Trans.  Soc. Rheoi,  3,137-152  (1959).
                    11  H. A. Barnes, J. F. Hutton, and  K. Walters,  An  Introduction  to Rheology, Elsevier,  Amsterdam
                (1989), p. 125.
   43   44   45   46   47   48   49   50   51   52   53