Page 81 - Wind Energy Handbook
P. 81

VORTEX CYLINDER MODEL OF THE ACTUATOR DISC                              55


             where (W 3 ˆ) is a vector product.

                                 d
                                   Q ¼ rW 3 ˆr sin ö t ¼ rˆrU 1 (1   a)           (3:35)
                                 dr

             Equating the two expressions gives

                                                    ˆ
                                             a9 ¼
                                                 4ðr Ù
                                                     2
             Hence

                                           2
                                          U a(1   a)    a(1   a)
                                     a9 t ¼  1       ¼
                                                        2
                                             2
                                           2
                                         Ù R (1 þ a9 t )  º (1 þ a9 t )
             so
                                                    a(1   a)
                                          a9 t (1 þ a9 t ) ¼                      (3:36)
                                                      º 2

             Equation (3.36) is not quite the same as Equation (3.23) of Section 3.3.3 and it can be
             shown that this is a result of ignoring the wake expansion.




             3.4.5  Torque and power

             The torque on an annulus of radius r and radial width är is

                                                           3
                              d                      r4ðrU a(1   a) 2
                                                           1
                                Qär ¼ rWˆr sin ö t är ¼              är
                              dr                         Ù(1 þ a9 t )
                                      1   3            2
                                d     2 rU 2ðr4a(1   a)
                                          1
                                  Q ¼                                             (3:37)
                                dr         Ù(1 þ a9 t )
             Power


                                                 1   3           2
                                  d              2  rU 2ðr4a(1   a)
                                                     1
                                    P ¼ Ù    Q ¼                                  (3:38)
                                  dr      dr           (1 þ a9 t )
                                        1   3    2       2
                                          rU ðR 4a(1   a)
                                            1
                                    P ¼  2                                        (3:39)
                                              (1 þ a9 t )
   76   77   78   79   80   81   82   83   84   85   86