Page 71 - Characterization and Properties of Petroleum Fractions - M.R. Riazi
P. 71

T1: IML
             P2: —/—
                       QC: —/—
  P1: KVU/—
  AT029-02
                                                          16:6
                        AT029-Manual-v7.cls
            AT029-Manual
                                           August 16, 2007
                                           2. CHARACTERIZATION AND PROPERTIES OF PURE HYDROCARBONS 51
                                          TABLE 2.6—Constants of Eq. (2.42) for various parameters.
                                                            Constants in Eq. (2.42)
                           θ           C No. Range  θ ∞      a           b         c     AAD b  %AAD b
                           Constants for physical properties of n-alkanes [31] a
                            T M         C 5 –C 40  397     6.5096     0.14187     0.470  1.5    0.71
                            T b         C 5 –C 40  1070    6.98291    0.02013      2/3  0.23    0.04
                            SG          C 5 –C 19  0.85   92.22793    89.82301    0.01  0.0009  0.12
                            d 20        C 5 –C 40  0.859  88.01379    85.7446     0.01  0.0003  0.04
                            I           C 5 –C 40  0.2833  87.6593    86.62167    0.01  0.00003  0.002
                            T br = T b /T c  C 5 –C 20  1.15  −0.41966  0.02436   0.58  0.14    0.027
                            −P c        C 5 –C 20   0      4.65757    0.13423     0.5   0.14    0.78
                            d c         C 5 –C 20  0.26   −3.50532    1.5 × 10 −6  2.38  0.002  0.83
                            −ω          C 5 –C 20  0.3    −3.06826    −1.04987    0.2   0.008   1.2
                            σ           C 5 –C 20  33.2    5.29577    0.61653     0.32  0.05    0.25
                           Constants for physical properties of n-alkylcyclopentanes
                            T M         C 7 –C 41  370     6.52504    0.04945      2/3  1.2     0.5
                            T b         C 6 –C 41  1028    6.95649    0.02239      2/3  0.3     0.05
                            SG          C 7 –C 25  0.853  97.72532    95.73589    0.01  0.0001  0.02
                            d 20        C 5 –C 41  0.857   85.1824    83.65758    0.01  0.0003  0.04
                            I           C 5 –C 41  0.283  87.55238    86.97556    0.01  0.00004  0.003
                            T br = T b /T c  C 5 –C 18  1.2  0.06765  0.13763     0.35  1.7     0.25
                            −P c        C 6 –C 18   0      7.25857    1.13139     0.26  0.4     0.9
                            −d c        C 6 –C 20  −0.255  −3.18846    0.1658     0.5   0.0004  0.11
                            −ω          C 6 –C 20  0.3    −8.25682    −5.33934    0.08  0.002   0.54
                            σ           C 6 –C 25  30.6   14.17595    7.02549     0.12  0.08    0.3
                           Constants for physical properties of n-alkylcyclohexane
                            T M         C 7 –C 20  360     6.55942    0.04681     0.7   1.3     0.7
                            T b         C 6 –C 20  1100    7.00275    0.01977      2/3  1.2     0.29
                            SG          C 6 –C 20  0.845  −1.51518    0.05182     0.7   0.0014  0.07
                            d 20        C 6 –C 21  0.84   −1.58489    0.05096     0.7   0.0005  0.07
                            I           C 6 –C 20  0.277  −2.45512    0.05636     0.7   0.0008  0.06
                            T br = T b /T c  C 6 –C 20  1.032  −0.11095  0.1363   0.4   2       0.3
                            −P c        C 6 –C 20   0      12.3107    5.53366     0.1   0.15    0.5
                            −d c        C 6 –C 20  −0.15  −1.86106    0.00662     0.8   0.0018  0.7
                            −ω          C 7 –C 20  0.6    −5.00861    −3.04868    0.1   0.005   1.4
                            σ           C 6 –C 20   31     2.54826    0.00759     1.0   0.17    0.6
                           Constants for physical properties of n-alkylbenzenes
                            T M         C 9 –C 42  375     6.53599    0.04912      2/3  0.88    0.38
                            T b         C 6 –C 42  1015    6.91062    0.02247      2/3  0.69    0.14
                            −SG         C 6 –C 20  −0.8562  224.7257  218.518     0.01  0.0008  0.1
                            −d 20       C 6 –C 42  −0.854  238.791    232.315     0.01  0.0003  0.037
                            −I          C 6 –C 42  −0.2829  137.0918  135.433     0.01  0.0001  0.008
                            T br = T b /T c  C 6 –C 20  1.03  −0.29875  0.06814   0.5   0.83    0.12
                            −P c        C 6 –C 20   0      9.77968    3.07555     0.15  0.22    0.7
                            −d c        C 6 –C 20  −0.22  −1.43083    0.12744     0.5   0.002   0.8
                            −ω          C 6 –C 20   0      −14.97     −9.48345    0.08  0.003   0.68
                            σ           C 6 –C 20  30.4    1.98292    −0.0142     1.0   0.4     1.7
                           With permission from Ref. [31].
                           a Data sources: T M T b , and d are taken from TRC [21]. All other properties are taken from API-TDB-1988 [2]. Units:
                                                        3
                           T M , T b, and T c are in K; d 20 and d c are in g/cm ; P c is in bar; σ is in dyn/cm.
           --`,```,`,``````,`,````,```,,-`-`,,`,,`,`,,`---
                           b  AD and AAD% given by Eqs. (2.134) and (2.135).
            the estimated critical properties by Eq. (2.42) are realistic for  ω, and σ all have finite values. From a physical point of
            hydrocarbons beyond C 18 . This analysis is called internal con-  view this may be true for most of these properties. However,
            sistency for correlations of critical properties.     Korsten [33] suggests that as N C →∞, P c and d c approach
              In the characterization method proposed by Korsten [32,  zero while T b , T c , and most other properties approach infinity.
            33] it is assumed that for extremely large hydrocarbons  Goossen [61] developed a correlation for molecular weight of
            (N C →∞), the boiling point and critical temperature also ap-  heavy fractions that suggests boiling point for extremely large
            proach infinity. However, according to Eq. (2.42) as N C →∞  molecules approches a finite value of T b∞ = 1078. In another
            or (M →∞), properties such as T b , SG, d, I, T br , P c , d c ,  paper [62] he shows that for infinite paraffinic chain length,
                                      TABLE 2.7—Prediction of atmospheric critical pressure from Eq. (2.42).
                                                     N c calculated at  N c calculated at  Predicted P c (bar) at
                                                                   ∗
                                                      ∗
                                   Hydrocarbon type     T b = T c  P c = 1.01325    T b = T c
                                   n-Alkanes             84.4         85            1.036
                                   n-Alkylcyclopentanes  90.1         90.1          1.01
                                   n-Alkylcyclohexanes  210.5        209.5          1.007
                                   n-Alkylbenzenes      158.4        158.4          1.013
                                   With permission from Ref. [31].













   Copyright ASTM International
   Provided by IHS Markit under license with ASTM             Licensee=International Dealers Demo/2222333001, User=Anggiansah, Erick
   No reproduction or networking permitted without license from IHS  Not for Resale, 08/26/2021 21:56:35 MDT
   66   67   68   69   70   71   72   73   74   75   76