Page 44 -
P. 44

37
                                                              Erd˝ os–Fuchs Theorem
                           As before, we will use Parseval on the first of these integrals, (4)
                        on the second, and Schwarz’s inequality together with Parseval on
                        the third.

                                                        n                      π      iθ
                           So write S(z)A(z)         c n z , and conclude that   |S(re )
                                                                              −π
                             iθ
                                                                                     2

                                                  2 2n
                                2
                        A(re )| dθ   2π        |c n | r . Since the c n are integers, |c n |
                                                                                 2
                         2
                                                                                       2
                        c ≥ c n andsothisis,furthermore,≥ 2π      c n r 2n    2πS(r )A(r ).
                         n
                        (The general fact then is that, if Fàz) has integral coefficients,
                          π       iθ  2            2

                         −π  |Fàre  )| dθ ≥ 2πF(r ).)
                           Now we introduce a side condition on our parameters r and N
                        which we shall insist on henceforth namely that
                                                     1
                                                          ≥ N.                       à 18)
                                                  1 − r 2
                                                                               1 2
                                            2
                                                                    N
                           Thus, by (14), S(r )>NØ  2N  ≥ N(1−   1  ) ≥ N(1− )        N  ,
                                                                 N             2       4
                                        2       C
                        and by (13), A(r )> √       , and we conclude that
                                                1−r  2
                                 π                          C N


                                        iθ     iθ  2
                                   |S(re )A(re )| dθ > √           ,   C > 0.        à 19)
                                −π                          1 − r 2
                           Next, (4) gives
                                            π     dθ                    e

                                                                2
                                     CN 2             iθ  ≤ MN log         2         (20)
                                           −π  |1 − re |              1 − r
                        and our last integral satisfies

                                π

                                       iθ
                                   S(re )     a n (re )   dθ
                                                    iθ n

                               −π

                                        π                π                2

                                                   2
                                                                     iθ n

                                 ≤         S(re ) dθ           a n (re )   dθ
                                               iθ

                                      −π                −π
                                                                 √

                                                                               2α 2n
                                                       2 2n
                                   2π       r 2k   |a n | r  ≤ 2π NM         n r .
                                        k<N
                        Applying (13) and (14) again leads finally to
                                                                        √

                                   π                                 M N

                                           iθ          iθ n
                                      S re        a n (re )   dθ ≤              .    à 21)
                                                                         2 α+1/2
                                  −π                              (1 − r )
   39   40   41   42   43   44   45   46   47   48   49