Page 50 -
P. 50

IV. Sequences without Arithmetic Progressions
                        44
                           So let α ≤ N be chosen, and let ω be any αth root of unity, i.e.,
                          α
                        ω   1. To estimate q m (ω), let us write it as
                                                                     
                                         α
                                                                     
                                            ω  β       1 − C P      1   ,
                                                                     
                                        β 1        a∈S           k<m
                                                   a<m          k≡β(α)
                                                  a≡β(α)
                        and let us note that the first inner sum

                                                  σ β         1
                                                          a∈S
                                                         a<m
                                                         a≡β(α)
                        counts the size of a subset of S, which therefore has P which is affine
                                          m
                                                                   m
                        to a subset of 0,   , and so has at most f    elements (where we
                                          α                        α
                        write fàx) for fà  x )).
                           Thus
                                         α
                                             β      m
                            q m (ω)  −     ω    f        − σ β
                                                     α
                                        β 1
                                        α
                                                   m
                                     +     ω β  f       − C P      1
                                                    α
                                       β 1                     k<m
                                                              k≡β(α)
                                      α                      α                 $   %
                                              m                     m            m
                                  ≤        f       − σ β +       f       − C P          (3)

                                              α                      α           α

                                     β 1                    β 1
                                      α                       α
                                               m                       m          m
                                           f        − σ β  +       f        − C P
                                               α                       α          α
                                     β 1                     β 1
                                                    α
                                            m
                                    2αf         −      σ β − C P m.
                                            α
                                                   β 1
                                                α
                           If we next note that     σ β is exactly the number of elements of
                                                β 1
                        S which are below m and so is equal to f (n) minus the number of
                        elements of S which are ≥ m, we obtain
                                 α

                                    σ β ≥ f (n) − fàn − m) ≥ C P n − fàn − m).        (4)
                                β 1
   45   46   47   48   49   50   51   52   53   54   55