Page 60 -
P. 60

54
                        Proof. This is almost trivial if b> N
                               N       k                     k+1
                               V. The Waring Problem           2/3 , for, since the derivative
                        of |      eàxn )| is bounded by 2πN     ,
                               n 1

                               N              N
                                                   a
                                      k          eà   k                2πN
                                                                  a       k+1
                                                   b              b
                                 eàxn )  ≤           n )  + x −

                              n 1            n 1
                                            N 1+o(1)    2πN 3/2    N 1+o(1)   2πN
                                         ≤           +          ≤          +        ,
                                                1                      1        1/4
                                             b 2 k−1       b        b 2 k−1    b
                        by C, which gives the result, since j   0 automatically. Assume
                        therefore that b ≤ N  2/3 , and note the following two simple facts (A)
                        and (B). For details see [K. Knopp, Theory and Application of Infinite
                        Series, Blackie & Sons, Glasgow, 1946.] and [G. P´ olya und G. Szeg¨ o,
                        Aufgaben und Lehrs¨ atze aus der Analysis, Dover Publications, New
                        York 1945, Vol. 1, Part II, p. 37].                       Q.E.D.
                                                                                   m
                        (A) If M is the maximum of the moduli of the partial sums     a n ,
                                                                                   n 1

                        V the total variation of fàt) in 0 ≤ t ≤ N, and M the maximum
                        of the modulus of fàt) in 0 ≤ t ≤ N, then

                                            N


                                               a n f (n)  ≤ M(V + M ).


                                           n 1
                        (B) If V is the total variation of fàt) in 0 ≤ t ≤ N, then

                                            N            N


                                              f (n) −     fàt)dt   ≤ V.

                                                       0
                                           n 1
                                           1    b    a  k
                           Now write α             eà  n ) and
                                           b   n 1   b
                                              N

                                                     k
                                                 eàxn )   S 1 + αS 2 ,                à 3)
                                             n 1
                        where
                                         N
                                                 a  k                 a     k
                                  S 1        e     n   − α e     x −      n   ,
                                                 b                    b
                                        n 1
                                         N
                                                     a
                                  S 2       e   x −      n k  .
                                                     b
                                        n 1
   55   56   57   58   59   60   61   62   63   64   65