Page 69 -
P. 69

VI. A “Natural” Proof of the Nonvanishing of L-Series
                        64
                                θt
                               e
                        Since
                               t
                               e −1  −  e −t  is analytic and has integrable derivatives on [0, ∞),
                                      t
                        we may integrate by parts repeatedly and thereby get
                                   1          1
                                         −
                                (n − θ) z   z − 1



                                       1        ∞     d   k     e θt    e −t
                                                    −                −        t z+k−1 dt.
                                                               t
                                    A(z + kð   0      dt      e − 1      t
                        This gives continuation to  z> −k, and, since k is arbitrary, the
                        continuation is to the entire plane.
   64   65   66   67   68   69   70   71   72   73   74