Page 73 -
P. 73

VII. Simple Analytic Proof of the Prime Number Theorem
                        residue theorem,
                                                                                       69
                                                  1     z
                                 S N (z + w)N  z    +       dz
                                                  z    R 2
                                A


                                                                     1      z
                                                                  z
                                   2πiS N (w) −      S N (z + w)N       +    2  dz,
                                                  −A                  z    R
                        with −A as usual denoting the reflection of A through the origin.
                        Thus, changing z to −z, this can be written as


                                                  1     z
                                  S N (z + w)N z    +       dz
                                                  z    R 2
                                A
                                                                      1     z
                                   2πiS N (w) −     S N (w − zðN  −z    +    2  dz.   (4)
                                                  A                   z    R
                        Combining (3) and (4) gives
                             2πi[Fàw) − S N (w)]

                                                        S N (w − zð    1     z
                                                    z
                                       r N (z + w)N −                    +        dz (5)
                                                            N z        z    R 2
                                    A
                                                        1    z
                                   +    Fàz + w)N   z     +   2   dz,
                                      B                z     R
                        and, to estimate these integrals, we record the following (here as
                        usual we write  z   x, and we use the notation α   β to mean
                        simply that |α|≤è β|):

                               1     z     2x
                                 +            along |z|  R (in particular on A),      à 6)
                               z    R 2    R 2

                               1     z      1       |z| 2     2
                                 +              1 +             on the line  z  −δ,
                               z    R 2     δ        R 2      δ
                                     |z|≤ R,                                          (7)
                                             ∞               ∞
                                                   1            dè       1
                             r N (z + w)               ≤                     ,        à 8)
                                                  n x+1        n x+1    xN x
                                           n N+1           N
                        and
                                                 N                     N

                                  S N (w − zð       n x−1  ≤ N x−1  +    n x−1 dè
                                                 n 1                  0
   68   69   70   71   72   73   74   75   76   77   78