Page 78 -
P. 78

VII. Simple Analytic Proof of the Prime Number Theorem
                        74
                           In the range N to N(1 + 1), by (14), a n ≥ a N + log(N/n) ≥
                                      N(1+1)                    N(1+1)
                        a N − 1.So          a n /è ≥ (a N − 1)        1/è , and (15) yields
                                      N                         N
                                          1 2                  1 2                2
                                                   1 +                    21 + 1 .à 17)
                                        N(1+1) 1         N1/N(1 + 1)
                          a N   1 +
                                        N     n
                           Similarly in [N(1 − 1), N], a n ≤ a N + log(N/n) ≤ a N + 1/(1 −
                        1), so that
                                        N                           N
                                                            1            1
                                            a n
                                                ≤   a N +                  ,
                                             n            1 − 1          n
                                      N(1−1)                      N(1−1)
                        and (16) gives
                                                                               2
                                  −1           1 2         −1        1 2      1 − 21
                          a N ≥         −    N        ≥         −                     .
                                 1 − 1              1    1 − 1     N1/N        1 − 1
                                             N(1−1) n
                                                                                     (18)
                        Taken together, (17) and (18) establish that a N → 0, and so (13) is
                        proved.
   73   74   75   76   77   78   79   80   81