Page 99 -
P. 99

2.4 The Biharmonic Equation  83


                                     A 0 = −  ψ 2 ds and A 1 =  (ψ 1 n + ψ 2 x)ds .    (2.4.18)
                                            Γ                 Γ
                           As a consequence of Theorem 2.4.1 one has the useful identity of Gaussian
                           type,
                                             ⎧
                                                 p    for  x ∈ Ω,
                                       ∂p
                                             ⎨
                               −W p,       =    1 p   for  x ∈ Γ,     for any p ∈R .   (2.4.19)
                                       ∂n       2                c
                                                 0    for  x ∈ Ω ,
                                             ⎩
                           2.4.1 Calder´on’s Projector
                           (See also [144].) In order to obtain the boundary integral operators as x
                           approaches Γ, from the simple– and double–layer potentials in the represen-
                           tation formulae (2.4.8) and (2.4.14), we need explicit information concerning
                           the kernels of the potentials. A straightforward calculation gives

                                                                     ∂E

                           V (Mu, Nu)(x)  =     E(x, y)Nu(y)ds y +       (x, y) Mu(y)ds y
                                                                     ∂n y
                                              Γ                  Γ
                                               1         2
                                          =        |x − y| log |x − y|Nu(y)ds y        (2.4.20)
                                              8π
                                                 Γ
                                                 1
                                              +       n(y) · (y − x)(2 log |x − y| +1)Mu(y)ds y
                                                 8π
                                                   Γ
                                  ∂u
                                                            ∂u(y)
                            W u,      (x)  =     M y E(x, y)     ds y +  N y E(x, y) u(y)ds y
                                  ∂n                         ∂n
                                              Γ                       Γ
                                               1
                                          =          (2 log |x − y| +1)+ ν(2 log |x − y| +3)
                                              8π
                                                 Γ
                                                               ((y − x) · n(y)) 2   ∂u(y)
                                                      +2(1 − ν)                     ds y (2.4.21)
                                                                  |x − y| 2     ∂n
                                                 1        ∂      1
                                              +            log(      )
                                                 2π    ∂n y    |x − y|
                                                   Γ
                                                 1       d    (x − y) · t(y)(x − y) · n(y)
                                              − (1 − ν)                               u(y)ds y .
                                                 2      ds y         |x − y| 2

                           This leads to the following 16 boundary integral operators.
   94   95   96   97   98   99   100   101   102   103   104