Page 100 -
P. 100

84     2. Boundary Integral Equations

                                      ⎞   ⎟  ⎟  ⎟  ⎟  ⎠  1 σ 2 (x)  (2.4.22)       (2.4.23)



                                        (0,σ 2 )(z)  (0,σ 2 )(z)  (0,σ 2 )(z)  −  2



                                        V  ·∇ z V  M z V  (0,σ 2 )(z)
                                           n x
                                                 N z V                        ⎞  ⎟  ⎟  ⎠

                                             1 σ 1 (x)


                                        (σ 1 , 0)(z)  (σ 1 , 0)(z)  −  2  (σ 1 , 0)(z)      | Γ  .  V 14  V 24  V 34  1 I  K 44  +  2



                                        V  ·∇ z V  (σ 1 , 0)(z)  N z V              K 33
                                           n x           ⎟  ⎟  ⎠           by  V 13  V 23  D 43
                                              M z V   V 14 ⎞  V 24 ⎟  V 34 ⎟  K 44  ∂u ,Mu,Nu  1 I  −  2


                                          1 ϕ 2 (x)   V 13  V 23  −K 33  D 43     u,  ∂n  defined  is  V 12  K 22  D 32  D 42


                                           −  2       V 12  K 22  D 32  D 42  =  1 I  +  2
                                        −W(0,ϕ 2 )(z)  ·∇ z W(0,ϕ 2 )(z)  −M z W(0,ϕ 2 )(z)  −N z W(0,ϕ 2 )(z)  ⎛ −K 11  ⎜  D 21  ⎜  ⎜  ⎜  D 31  ⎝  D 41  =(ϕ 1 ,ϕ 2 ,σ 1 ,σ 2 )    bi–Laplacian  the  ⎛ 1 I  K 11  −  ⎜ 2  D 21  D 31  D 41







                                           −n x            =         ϕ    σ  with  ⎜  =  K  +  ⎝


                                       1 ϕ 1 (z)                           associated  1 I  :=  2


                                        −  2  ·∇ z W(ϕ 1 , 0)(z)  −M z W(ϕ 1 , 0)(z)  −N z W(ϕ 1 , 0)(z)  projector  C Ω
                                      ⎛ −W(ϕ 1 , 0)(z)  −n x               Calderon







                                   =      ⎜  ⎜  ⎜  ⎜  ⎝            write  we  the
                                   ϕ    σ    lim  Ω z→x∈Γ          where

                                   K                                       Then
   95   96   97   98   99   100   101   102   103   104   105