Page 316 - Introduction to Statistical Pattern Recognition
P. 316
298 Introduction to Statistical Pattern Recognition
5. K. Fukunaga and L. D. Hostetler, Optimization of k-nearest neighbor
density estimates, Trans. IEEE Inform. Theory, IT- 19, pp. 320-326,
1973.
6. J. VanNess, On the dominance of non-parametric Bayes rule discrim-
inant algorithms in high dimensions, Pattern Recognition, 12, pp. 355-
368, 1980.
7. P. Hall, Large sample optimality of least squares cross-validation in den-
sity estimation, Ann. Star., 1 I, pp. 1156-1 174, 1983.
8. Y. S. Chow, S. German, and L. D. Wu, Consistent cross-validated den-
sity estimation, Ann. Star., 11, pp. 25-38, 1983.
9. T. J. Wagner, Nonparametric estimates of probability densities, Trans.
IEEE Inform. Theory, IT-21, pp. 438-440, 1975.
10. B. W. Silverman, Choosing the window width when estimating a den-
sity, Biornetrika, 65, pp. 1-11, 1978.
11. D. J. Hand, “Kernel Discriminant Analysis,” Research Studies Press,
Chichester, UK, 1982.
12. E. Fix and L. J. Hodges, Discriminatory analysis, nonparametric discrim-
ination, consistency properties, Report No. 4, Project 2 1-49-004, School
of Aviation Medicine, Randolph Field, Texas, 195 1.
13. E. Fix and L. J. Hodges, Nonparametric discrimination small sample per-
formance, Report No. 11, Project 21-49-004, School of Aviation Medi-
cine, Randolph Field, Texas, 1952.
14. D. 0. Loftsgaarden and C. P. Quesenberry, A nonparametric estimate of
a multivariate density function. Ann. Math. Stat., 36, pp. 1049-1051,
1965.
15. D. S. Moore and J. W. Yackel, Consistency properties of nearest neigh-
bor density estimates, Ann. Stat., 5, pp. 143-154, 1977.
16. L. Devroye and T. J. Wagner, The strong uniform consistency of nearest
neighbor density estimates, Ann. Star., 5, pp. 536-540, 1977.
17. D. A. S. Fraser, “Nonparametric Methods in Statistics,” John Wiley,
New York, 1957.
18. K. Fukunaga and T. E. Flick, Classification error for a very large number
of classes, Trans. IEEE Pattern Anal. and Machine Intell., PAMI-6, pp.
779-788, 1984.