Page 313 - Introduction to Statistical Pattern Recognition
P. 313

6  Nonparametric Density Estimation                          295




                      yg = +{(2x0 - 1)(2xO - 1) + (2x1 - 1)(2xO - 1)

                           + (2x0 - 1)(2x1 - 1) + (2x1 - 1)(2x1 - 1)) = 0,     (6.163)

                            I                  1
                      y\':  = -(2xO  - 1)(2x0 - 1) + -(2x1  - 1)(2XO - 1)
                            6                  3

                              1                  1                   1
                           + -(2x0  -  1)(2x1 - 1) + -(2x1  - 1)(2x1 - 1) = --  .   (6.164)
                              3                  6                   3
                     Therefore, substituting these results into (6.157), we obtain


                                                                               (6.165)

                                                                               (6.166)




                     Computer Projects
                                                                               ,.
                     1.   Estimate the  mean  and variance  of the Parzen  density  estimate, p(X), as
                          follows:

                            Data:  NX(OJ), n = 8
                            Design samples:  N  = 100
                            Test points:  [e 0. . . O]',  . . . ,[O.  . . 0 elT
                                        i=  1, 2,  3,  4,  5
                            Procedure:  Parzen
                            Kernel:  Uniform
                            Kernel size:  Optimal I'
                            No. of trials:  T = 10
                            Results:  Mean and variance vs. 1.
                     2.   Repeat Project  1  for a normal kernel.

                     3.   Repeat Project  1 for the kNN density estimate with the optimal k.
   308   309   310   311   312   313   314   315   316   317   318