Page 141 - A First Course In Stochastic Models
P. 141

THEORETICAL CONSIDERATIONS                   133

                                    (n)   (n)   (n)     (n)        (n)
                Using the inequalities m  ≤ p  ≤ M  and m  ≤ π j ≤ M  , we find
                                    j     ij    j       j          j
                                  (n)        (n)   (n)
                                |p  − π j | ≤ M  − m  ,  n = 0, 1, . . .    (3.5.17)
                                  ij         j     j
                for any i, j ∈ I. Together the inequalities (3.5.16) and (3.5.17) yield the assertion
                of the theorem except that we have still to verify that {π j } represents a probability
                                                                  (n)

                distribution. Obviously, the π j are non-negative. Since  p  = 1 for all n and
                                                              j∈I  ij
                 (n)
                p   → π j as n → ∞, we obtain from the finiteness of I that the π j sum to 1.
                 ij
                  It remains to verify (3.5.15). To do so, fix j ∈ I and n ≥ ν. Let x and y be the
                               (n)   (n)     (n)   (n)
                states for which M  = p  and m  = p  . Then
                               j     xj      j     yj
                            (n)   (n)   (n)   (n)      (ν) (n−ν)     (ν) (n−ν)
                      0 ≤ M   − m   = p   − p   =    p   p     −    p  p
                           j      j     xj    yj       xk  kj        yk  kj
                                                  k∈I            k∈I
                               (ν)  (ν)  (n−ν)
                        =    {p  − p  }p
                               xk   yk  kj
                          k∈I
                               (ν)  (ν) +  (n−ν)      (ν)  (ν) −  (n−ν)
                        =    {p  − p  } p      −    {p  − p   } p     ,
                               xk   yk    kj          xk   yk    kj
                          k∈I                    k∈I
                where a = max(a, 0) and a = − min(a, 0). Hence, by a , a ≥ 0,
                                                                    −
                      +
                                                                +
                                        −
                         (n)   (n)       (ν)  (ν) +  (n−ν)      (ν)  (ν) −  (n−ν)
                   0 ≤ M   − m    ≤    {p  − p  } M      −    {p  − p  } m
                         j     j        xk    yk    j           xk   yk    j
                                    k∈I                    k∈I
                            (ν)         (n−ν)   (n−ν)
                                    } [M
                     =    {p  − p (ν) +      − m    ],
                            xk    yk    j       j
                       k∈I
                where the last equality uses the fact that  
  a  +  =  
  a −  if  
 k k = 0. Using
                                                                       a
                                                    k k      k k
                the relation (a − b) = a − min(a, b), we next find
                                +


                           (n)    (n)              (ν)  (ν)    (n−ν)   (n−ν)
                      0 ≤ M   − m   ≤ 1 −     min(p  , p  )  M     − m      .
                           j     j                 xk  yk     j        j
                                           k∈I
                      (ν)
                Since p  ≥ ρ for all i, we find
                      is
                                      (ν)  (ν)           (ν)  (ν)
                           1 −   min(p  , p  ) ≤ 1 − min(p  , p  ) ≤ 1 − ρ,
                                      xk   yk            xs  ys
                              k∈I
                which implies the inequality (3.5.15). This completes the proof.
                  Exponential convergence of the n-step transition probabilities does not hold in
                general for an infinite-state Markov chain. Strong recurrence conditions should be
                imposed to establish exponential convergence in infinite-state Markov chains.
   136   137   138   139   140   141   142   143   144   145   146