Page 166 - A First Course In Stochastic Models
P. 166

MARKOV PROCESSES ON A SEMI-INFINITE STRIP          159

                                     ∞
                                             i
                   (λ s + µ s + β s + δ s )  p(i, s)z − µ s p(0, s)
                                    i=0
                             ∞                 ∞                   ∞

                                         i                  i                   i
                        = λ s  p(i − 1, s)z + µ s  p(i + 1, s)z + β s−1  p(i, s − 1)z
                            i=1                i=0                 i=0
                                  ∞
                                              i
                            + δ s+1  p(i, s + 1)z .
                                  i=0
                This gives for s = 0, 1, . . . , m,

                                                              µ s
                  (λ s + µ s + β s + δ s )G s (z) − µ s p(0, s) = λ s zG s (z) +  [G s (z) − p(0, s)]
                                                               z
                                                       + β s−1 G s−1 (z) + δ s+1 G s+1 (z).

                We rewrite this as
                      2
                   [λ s z + µ s − (λ s + µ s + β s + δ s )z]G s (z) + β s−1 zG s−1 (z) + δ s+1 zG s+1 (z)
                        = µ s (1 − z)p(0, s),  s = 0, 1, . . . , m.          (4.4.5)
                This is a system of linear equations in the unknowns G 0 (z), . . . , G m (z). To see
                what the solution looks like, it is convenient to write (4.4.5) in matrix notation. To
                do so, define the diagonal matrices   and M by

                       = diag(λ 0 , λ 1 , . . . , λ m )  and M = diag(µ 0 , µ 1 , . . . , µ m ).

                Define the transition rate matrix T = (t ab ) with a, b = 0, 1, . . . , m by
                  t s,s−1 = β s−1 , t s,s+1 = δ s+1 , t ss = −(β s + δ s ) and t ab = 0 otherwise.

                Finally, define the matrix A(z) by
                                            2
                                   A(z) =  z − (  − T + M)z + M

                and the column vectors p 0 and g(z) by
                    p 0 = (p(0, 0), . . . , p(0, m)) and g(z) = (G 0 (z), . . . , G m (z)).

                Then the linear equations (4.4.5) in matrix notation are

                                       A(z)g(z) = (1 − z)Mp 0                (4.4.6)
                By Cramer’s rule for linear equations, the solution of (4.4.6) is given by

                                         det A s (z)
                                 G s (z) =      ,  s = 0, 1, . . . , m,      (4.4.7)
                                         det A(z)
   161   162   163   164   165   166   167   168   169   170   171