Page 239 - A First Course In Stochastic Models
P. 239
232 MARKOV CHAINS AND QUEUES
Hordijk, A. and Schassberger, R. (1982) Weak convergence of generalized semi-Markov
processes. Stoch. Proc. Appl., 12, 271–291.
Jackson, J.R. (1957) Networks of waiting times. Operat. Res., 5, 518–521.
Jackson, J.R. (1963) Jobshop-like queueing systems. Management Sci., 10, 131–142.
Jackson, R.R.P. (1954) Queueing systems with phase-type services. Operat. Res. Quart., 5,
109–120.
Jennings, O.B., Mandelbaum, A., Massey, W.A. and Whitt, W. (1996) Server staffing to
meet time-varying demand. Management Sci., 10, 1383–1394.
Kelly, F.P. (1979) Reversibility and Stochastic Networks. John Wiley & Sons, Inc.,
New York.
Kelly, F.P. (1991) Loss networks. Ann. Appl. Prob., 1, 319–378.
Kleinrock, L. (1976) Queueing Systems, Vol II, Computer Applications. John Wiley & Sons,
Inc., New York.
Reich, E. (1957) Waiting-times when queues are in tandem. Ann. Math. Statist., 28, 768–773.
Ross, K.W. (1995) Multiservice Loss Models for Broadband Telecommunication Networks.
Springer-Verlag, Berlin.
Schassberger, R. (1973) Warteschlangen (in German). Springer-Verlag, Berlin.
Schassberger, R. (1986) Two remarks on insensitive stochastic models. Adv. Appl. Prob.,
18, 791–814.
Tak´ acs, L. (1969) On Erlang’s formula. Ann. Math. Statist., 40, 71–78.
Van Dijk, N.M. (1993) Queueing Networks and Product Form. John Wiley & Sons, Ltd,
Chichester.
Van Dijk, N.M. and Tijms, H.C. (1986) Insensitivity in two-node blocking network models
with applications. Teletraffic Analysis and Computer Performance Evaluation, edited by
O.J. Boxma, J.W. Cohen and H.C. Tijms, pp. 329–340. North-Holland, Amsterdam.
Whitt, W. (1980) Continuity of generalized semi-Markov processes. Math. Operat. Res., 5,
494–501.
Whitt, W. (1992) Understanding the efficiency of multi-server service systems. Management
Sci., 38, 708–723.
Whittle, P. (1985) Partial balance and insensitivity. J. Appl. Prob., 22, 168–176.