Page 28 - A First Course In Stochastic Models
P. 28

COMPOUND POISSON PROCESSES                    19

                Discrete compound Poisson distribution
                Consider first the case of discrete random variables D 1 , D 2 , . . . :

                                   a j = P {D 1 = j},  j = 0, 1, . . . .
                Then a simple algorithm can be given to compute the probability distribution of
                the compound Poisson variable X(t). For any t ≥ 0, let
                                  r j (t) = P {X(t) = j},  j = 0, 1, . . . .

                Define the generating function A(z) by
                                             ∞
                                                  j
                                      A(z) =    a j z ,  |z| ≤ 1.
                                             j=0
                Also, for any fixed t > 0, define the generating function R(z, t) as

                                             ∞
                                                    j
                                    R(z, t) =   r j (t)z ,  |z| ≤ 1.
                                            j=0
                Theorem 1.2.1 For any fixed t > 0 it holds that:

                (a) the generating function R(z, t) is given by
                                      R(z, t) = e −λt{1−A(z)} ,  |z| ≤ 1     (1.2.2)


                (b) the probabilities {r j (t), j = 0, 1, . . . } satisfy the recursion
                                        j−1
                                      λt
                               r j (t) =   (j − k)a j−k r k (t),  j = 1, 2, . . . ,  (1.2.3)
                                      j
                                        k=0
                   starting with r 0 (t) = e −λt(1−a 0 ) .
                Proof  Fix t ≥ 0. By conditioning on the number of arrivals up to time t,
                               ∞

                        r j (t) =  P {X(t) = j | N(t) = n}P {N(t) = n}
                               n=0
                               ∞                            n
                                                      −λt  (λt)
                             =    P {D 0 + · · · + D n = j}e  ,  j = 0, 1, . . .
                                                          n!
                               n=0
                with D 0 = 0. This gives, after an interchange of the order of summation,
                          ∞          ∞         n ∞
                                 j       −λt                            j
                                            (λt)
                             r j (t)z =  e          P {D 0 + · · · + D n = j}z .
                                             n!
                         j=0         n=0         j=0
   23   24   25   26   27   28   29   30   31   32   33