Page 299 - A First Course In Stochastic Models
P. 299

OPTIMIZATION OF QUEUES                     293

                the number in system from M + 1 to M. If all of the s channels are busy, then
                the time until the next event (service completion or new arrival) is exponentially
                distributed with mean 1/(λ + sµ) and the next event is generated by an arrival
                with probability λ/(λ + sµ). Putting the pieces together, we find
                                    1       λ       1             sµ
                       τ (M,t) (s) =    +                 =
                                 λ + sµ   λ + sµ  sµ − λ    (λ + sµ)(sµ − λ)
                and
                                    hM + rs      λ     h(M + 1) + rs     hλ
                  c (M,t) (s) = K(t, s) +   +                      +         2  .
                                     λ + sµ    λ + sµ     sµ − λ      (sµ − λ)
                Also, by the last argument above,
                                         sµ                            λ
                        p (M,t)(M−1,s) (s) =     and  p (M,t)(M,s) (s) =  .
                                        λ + sµ                      λ + sµ
                For the other states of the embedded state space I, the basic elements of the
                semi-Markov decision model are easily specified. We have
                                        1
                         τ (i,t) (a) =         ,   0 ≤ i ≤ M − 1, 0 ≤ a ≤ s,
                                  λ + min(i, a)µ
                and
                                         hi + ra
                     c (i,t) (a) = K(t, a) +       ,   0 ≤ i ≤ M − 1, 0 ≤ a ≤ s.
                                       λ + min(i, a)µ
                The one-step transition probabilities are left to the reader. Next we formulate the
                value-iteration algorithm. In the data transformation we take τ = 1/(λ+sµ). Then
                the recurrence relation (7.2.3) becomes

                    V n ((i, t)) = min  {λ + min(i, a)µ}K(t, a) + hi + ra
                              0≤a≤s
                                    λ                  min(i, a)µ
                               +       V n−1 ((i + 1, a)) +     V n−1 ((i − 1, a))
                                 λ + sµ                  λ + sµ

                                      λ + min(i, a)µ
                               + 1 −                V n−1 ((i, t))
                                         λ + sµ
                for the states (i, t) with 0 ≤ i ≤ M − 1, 0 ≤ t ≤ s. For the states (M, t),
                                 1                         hλ
                    V n ((M, t)) =  (λ + sµ)(sµ − λ)K(t, s) +   + hM + rs
                                sµ                        sµ − λ
                                  sµ − λ                  λ(sµ − λ)
                                +       V n−1 ((M − 1, s)) +       V n−1 ((M, s))
                                  λ + sµ                 sµ(λ + sµ)
                                       sµ − λ

                                + 1 −          V n−1 ((M, t))
                                         sµ
                with the convention V n−1 ((−1, t)) = 0.
   294   295   296   297   298   299   300   301   302   303   304