Page 35 - A First Course In Stochastic Models
P. 35

26             THE POISSON PROCESS AND RELATED PROCESSES

                on what may happen in (t, t +  t), it follows that

                  P ij (k, t +  t) = P ij (k, t)(1 − λ j  t)(1 − ω j  t) +  P is (k, t)[(ω s  t) × p sj ]
                                                           s
=j
                                  k−1

                                                      (j)
                                +    P ij (ℓ, t) (λ j  t) × a  + o( t).
                                                      k−ℓ
                                  ℓ=0
                Using the definition of the q ij , we rewrite this relation as
                                                           m

                          P ij (k, t +  t) = P ij (k, t)(1 − λ j  t) +  P is (k, t)q sj  t
                                                          s=1
                                          k−1
                                                       (j)

                                        +    P ij (ℓ, t)λ j a   t + o( t),
                                                       k−ℓ
                                          ℓ=0
                which implies that
                                              m                k−1
                       d                                                 (j)
                        P ij (k, t) = −λ j P ij (k, t) +  P is (k, t)q sj + λ j  P ij (ℓ, t)a k−ℓ .
                      dt
                                              s=1              ℓ=0
                Letting P (k, t) be the m × m matrix whose (i, j)th element is P ij (k, t), we have
                in matrix notation that

                                                       k−1
                             d
                               P (k, t) = P (k, t)(Q −  ) +  P (ℓ, t)A k−ℓ  .
                             dt
                                                       ℓ=0
                Using the definition of the matrices D k , we find next that

                                                     k−1
                                 d
                                  P (k, t) = P (k, t)D 0 +  P (ℓ, t)D k−ℓ
                                dt
                                                     ℓ=0
                                            k

                                         =    P (ℓ, t)D k−ℓ .
                                           ℓ=0
                                                                    k
                Multiply componentwise both sides of this matrix equation by z and sum over k.
                Since the generating function of the convolution of two sequences is the product
                of the generating functions of the two sequences, it follows that
                                      d
                                          ∗
                                        P (z, t) = P (z, t)D(z).
                                                   ∗
                                      dt
                For each fixed i this equation gives a system of linear differential equations in
                 ∗
                P (z, t) for j = 1, . . . , m. Thus, by a standard result from the theory of linear
                 ij
   30   31   32   33   34   35   36   37   38   39   40