Page 470 - A First Course In Stochastic Models
P. 470

F. NUMERICAL LAPLACE INVERSION                465

                               Table F.1  The constants α j and λ j for n = 8, 16
                          α j (n = 8)                        λ j
                        2.00000000000000000000E+00  3.14159265358979323846E+00
                        2.00000000000009194165E+00  9.42477796076939341796E+00
                        2.00000030233693694331E+00  1.57079633498486685135E+01
                        2.00163683400961269435E+00  2.19918840702852034226E+01
                        2.19160665410378500033E+00  2.84288098692614839228E+01
                        4.01375304677448905244E+00  3.74385643171158002866E+01
                        1.18855502586988811981E+01  5.93141454252504427542E+01
                        1.09907452904076203170E+02  1.73674723843715552399E+02
                          α j (n = 16)                       λ j
                        2.00000000000000000000E+00  3.14159265358979323846E+00
                        2.00000000000000000000E+00  9.42477796076937971539E+00
                        2.00000000000000000000E+00  1.57079632679489661923E+01
                        2.00000000000000000000E+00  2.19911485751285526692E+01
                        2.00000000000000025539E+00  2.82743338823081392079E+01
                        2.00000000001790585116E+00  3.45575191894933477513E+01
                        2.00000009630928117646E+00  4.08407045355964511919E+01
                        2.00006881371091937456E+00  4.71239261219868564304E+01
                        2.00840809734614010315E+00  5.34131955661131603664E+01
                        2.18638923693363504375E+00  5.99000285454941069650E+01
                        3.03057284932114460466E+00  6.78685456453781178352E+01
                        4.82641532934280440182E+00  7.99199036559694718061E+01
                        8.33376254184457094255E+00  9.99196221424608443952E+01
                        1.67554002625922470539E+01  1.37139145843604237972E+02
                        4.72109360166038325036E+01  2.25669154692295029965E+02
                        4.27648046755977518689E+02  6.72791727521303673697E+02


                take n as large as 8 or 16 to achieve a very high precision. In Table F.1 we give
                both for n = 8 and n = 16 the abscissae λ j and the weights α j for j = 1, . . . , n.
                  It is convenient to rewrite (F.2) as


                               n      2
                           e  bℓ               b + iλ j + iπ(t − 1)
                  f (ℓ ) ≈       α j   Re f  ∗                    cos(πℓt) dt.
                                    0
                              j=1

                                                      #           $
                                     1  
 n     2    ∗  b+iλ j +iπ(t−1)
                Put for abbreviation g ℓ =  α   Re f                cos(πℓt) dt. Then
                                     2  j=1 j  0
                           bℓ
                f (ℓ ) ≈ (2e / )g ℓ . The integral in g ℓ is calculated by using the trapezoidal rule
                approximation with a division of the integration interval (0, 2) into 2m subintervals
                of length 1/m for an appropriately chosen value of m. It is recommended to take
                m = 4M. This gives
                                       2m−1
                                                            ∗
                                                                ∗
                                     1            πℓp     f + f 2m
                                                           0
                                             ∗
                               g ℓ ≈       f cos        +         ,            (F.3)
                                            p
                                    2m             m          2
                                        p=1
   465   466   467   468   469   470   471   472   473   474   475