Page 45 - Hybrid Enhanced Oil Recovery Using Smart Waterflooding
P. 45

CHAPTER 2 Mechanisms of Low-Salinity and Smart Waterflood   37

          REFERENCES                                      waterflooding strategy by manipulation of injection brine
          Alotaibi, M. B., Nasr-El-Din, H. A., & Fletcher, J. J. (2011).  composition. In Paper presented at the EUROPEC/EAGE con-
            Electrokinetics of limestone and dolomite rock particles.  ference and exhibition, Amsterdam, The Netherlands, 8e11
            SPE Reservoir Evaluation and Engineering, 14(5), 594e603.  June. https://doi.org/10.2118/119835-MS.
            https://doi.org/10.2118/148701-PA.          McGuire, P. L., Chatham, J. R., Paskvan, F. K., Sommer, D. M.,
          Arnarson, T. S., & Keil, R. G. (2000). Mechanisms of pore water  & Carini, F. H. (2005). Low salinity oil recovery: An exciting
            organic matter adsorption to montmorillonite. Marine  new EOR opportunity for Alaska’s North Slope. In Paper
            Chemistry,  71(3),  309e320.  https://doi.org/10.1016/  presented at the SPE Western Regional Meeting, Irvine, Califor-
            S0304-4203(00)00059-1.                        nia, 30 March 1 April. https://doi.org/10.2118/93903-MS.
          Austad, T., Rezaeidoust, A., & Puntervold, T. (2010). Chemical  RezaeiDoust, A., Puntervold, T., Strand, S., & Austad, T. (2009).
            mechanism of low salinity water flooding in sandstone  Smart water as wettability modifier in carbonate and
            reservoirs. In Paper presented at the SPE improved oil recovery  sandstone: A discussion of similarities/differences in the
            symposium, Tulsa, Oklahoma, USA, 24e28 April. https://  chemical  mechanisms.  Energy  and  Fuels,  23(9),
            doi.org/10.2118/129767-MS.                    4479e4485. https://doi.org/10.1021/ef900185q.
          Brady, P. V., Krumhansl, J. L., & Mariner, P. E. (2012). Surface  Sposito, G. (1989). The chemistry of soils. New York: Oxford
            complexation modeling for improved oil recovery. In Paper  University Press.
            presented at the SPE improved oil recovery symposium, Tulsa,  Strand, S., Høgnesen, E. J., & Austad, T. (2006). Wettability
            Oklahoma, USA, 14e18 April. https://doi.org/10.2118/  alteration of carbonatesdeffects of potential determining
                                                                       2-
            153744-MS.                                    ions (Ca 2þ and SO 4 ) and temperature. Colloids and Surfaces
          Brady, P. V., & Thyne, G. (2016). Functional wettability in car-  A: Physicochemical and Engineering Aspects, 275(1), 110.
            bonate reservoirs. Energy and Fuels, 30(11), 9217e9225.  https://doi.org/10.1016/j.colsurfa.2005.10.061.
            https://doi.org/10.1021/acs.energyfuels.6b01895.  Tang, G.-Q., & Morrow, N. R. (1999). Influence of brine
          Buckley, J. S., & Liu, Y. (1998). Some mechanisms of crude oil/  composition and fines migration on crude oil/brine/rock
            brine/solid interactions. Journal of Petroleum Science and  interactions and oil recovery. Journal of Petroleum Science
            Engineering, 20(3), 155e160. https://doi.org/10.1016/  and Engineering, 24(2), 99e111. https://doi.org/10.1016/
            S0920-4105(98)00015-1.                        S0920-4105(99)00034-0.
          Chen, S.-Y., Kaufman, Y., Kristiansen, K., Dobbs Howard, A.,  Thompson, D. W., & Pownall, P. G. (1989). Surface electrical
            Cadirov Nicholas, A., Seo, D., et al. (2018). New atomic  properties of calcite. Journal of Colloid and Interface Science,
            to molecular scale insights into smart water flooding mech-  131(1), 74e82. https://doi.org/10.1016/0021-9797(89)
            anisms in carbonates. In Paper presented at the SPE improved  90147-1.
            oil recovery conference, Tulsa, Oklahoma, USA, 14e18 April.  Zhang, P., & Austad, T. (2006). Wettability and oil recovery
            https://doi.org/10.2118/190281-MS.            from carbonates: Effects of temperature and potential deter-
          Hiorth, A., Cathles, L. M., & Madland, M. V. (2010). The impact  mining ions. Colloids and Surfaces A: Physicochemical and En-
            of pore water chemistry on carbonate surface charge and oil  gineering  Aspects,  279(1),  179e187.  https://doi.org/
            wettability. Transport in Porous Media, 85(1), 121. https://  10.1016/j.colsurfa.2006.01.009.
            doi.org/10.1007/s11242-010-9543-6.          Zhang, P., Tweheyo, M. T., & Austad, T. (2006). Wettability
          Hirasaki, G. J. (1991). Wettability: Fundamentals and surface  alteration and improved oil recovery in Chalk: the effect
            forces. SPE Formation Evaluation, 6(02), 217e226. https://  of calcium in the presence of sulfate. Energy and Fuels,
            doi.org/10.2118/17367-PA.                     20(5), 2056e2062. https://doi.org/10.1021/ef0600816.
          Lager, A., Webb, K. J., Black, C. J. J., Singleton, M., &  Zhang, P., Tweheyo, M. T., & Austad, T. (2007). Wettability
            Sorbie, K. S. (2008). Low salinity oil recovery - an experi-  alteration and improved oil recovery by spontaneous imbi-
            mental investigation. Petrophysics, 49(1), 28e35. SPWLA-  bition of seawater into chalk: Impact of the potential deter-
                                                                         2þ
                                                                                 2
                                                                     2þ
            2008-v49n1a2.                                 mining ions Ca ,Mg , and SO 4 . Colloids and Surfaces A:
          Ligthelm, D. J., Gronsveld, J., Hofman, J., Brussee, N.,  Physicochemical and Engineering Aspects, 301(1), 199e208.
            Marcelis, F., & van der Linde, H. (2009). Novel  https://doi.org/10.1016/j.colsurfa.2006.12.058.
   40   41   42   43   44   45   46   47   48   49   50