Page 70 - Hybrid Enhanced Oil Recovery Using Smart Waterflooding
P. 70

62      Hybrid Enhanced Oil Recovery using Smart Waterflooding

            Media, 86(2), 353e383. https://doi.org/10.1007/s11242-  wettability. Transport in Porous Media, 85(1), 121. https://
            010-9626-4.                                   doi.org/10.1007/s11242-010-9543-6.
          Bethke, C. (1996). Geochemical reaction modeling: Concepts and  Jerauld, G. R., Webb, K. J., Lin, C.-Y., & Seccombe, J. (2006).
            applications. New York: Oxford University Press.  Modeling low-salinity waterflooding. In Paper presented at
          Brady, P. V., & Krumhansl, J. L. (2012). A surface complexation  the SPE annual technical conference and exhibition, San Anto-
            model of oilebrineesandstone interfaces at 100 C: Low  nio,  Texas,  USA,  24e27  September.  https://doi.org/

            salinity waterflooding. Journal of Petroleum Science and Engi-  10.2118/102239-MS.
            neering,  81,  171e176.  https://doi.org/10.1016/  Jerauld, G. R., Webb, K. J., Lin, C.-Y., & Seccombe, J. C. (2008).
            j.petrol.2011.12.020.                         Modeling low-salinity waterflooding. SPE Reservoir Evalua-
          Brady, P. V., Krumhansl, J. L., & Mariner, P. E. (2012). Surface  tion and Engineering, 11(6), 1000e1012. https://doi.org/
            complexation modeling for improved oil recovery. In Paper  10.2118/102239-PA.
            presented at the SPE improved oil recovery symposium, Tulsa,  Kazemi Nia Korrani, A., Jerauld, G. R., & Sepehrnoori, K. (2016).
            Oklahoma, USA, 14e18 April. https://doi.org/10.2118/  Mechanistic modeling of low-salinity waterflooding through
            153744-MS.                                    coupling a geochemical package with a compositional reser-
          Brady, P. V., Morrow, N. R., Fogden, A., Deniz, V.,  voir simulator. SPE Reservoir Evaluation and Engineering,
            Loahardjo, N., & Winoto. (2015). Electrostatics and the  19(1), 142e162. https://doi.org/10.2118/169115-PA.
            low salinity effect in sandstone reservoirs. Energy and Fuels,  Kazemi Nia Korrani, A., Sepehrnoori, K., & Delshad, M.
            29(2), 666e677. https://doi.org/10.1021/ef502474a.  (2013). A novel mechanistic approach for modeling low
          Brady, P. V., & Thyne, G. (2016). Functional wettability in car-  salinity water injection. In Paper presented at the SPE annual
            bonate reservoirs. Energy and Fuels, 30(11), 9217e9225.  technical conference and exhibition, New Orleans, Louisiana,
            https://doi.org/10.1021/acs.energyfuels.6b01895.  USA, 30 Septembere2 October. https://doi.org/10.2118/
          Chandrasekhar, S., Sharma, H., & Mohanty, K. K. (2016).  166523-MS.
            Wettability alteration with brine composition in high tem-  Kozaki, C. (2012). Efficiency of low salinity polymer flooding in
            perature carbonate rocks. In Paper presented at the SPE  sandstone cores (Master’s thesis). The University of Texas at
            annual technical conference and exhibition, Dubai, UAE,  Austin.
            26e28 September. https://doi.org/10.2118/181700-MS.  Li, Y.-K., & Nghiem, L. X. (1986). Phase equilibria of oil, gas and
          Dang, C. T. Q., Nghiem, L. X., Chen, Z. J., & Nguyen, Q. P.  water/brine mixtures from a cubic equation of state and hen-
            (2013). Modeling low salinity waterflooding: Ion ex-  ry’slaw. The Canadian Journal of Chemical Engineering, 64(3),
            change, geochemistry and wettability alteration. In Paper  486e496. https://doi.org/10.1002/cjce.5450640319.
            presented at the SPE annual technical conference and exhibition,  Mohanty, K. K., & Chandrasekhar, S. (2013). Wettability alter-
            New Orleans, Louisiana, USA, 30 Septembere2 October.  ation with brine composition in high temperature carbon-
            https://doi.org/10.2118/166447-MS.            ate reservoirs. In Paper presented at the SPE annual technical
          Drever, J. I. (1997). The geochemistry of natural waters: Surface  conference and exhibition, New Orleans, Louisiana, USA, 30
            and groundwater environments (3rd ed.). Upper Saddle River,  Septembere2 October. https://doi.org/10.2118/166280-MS.
            NJ: Prentice Hall.                          Nghiem, L., Sammon, P., Grabenstetter, J., & Ohkuma, H.
          Eyring, H. (1935). The activated complex in chemical  (2004). Modeling CO 2 storage in aquifers with a fully-
            reactions. The Journal of Chemical Physics, 3(2), 107e115.  coupled geochemical EOS compositional simulator. In
            https://doi.org/10.1063/1.1749604.            Paper presented at the SPE/DOE symposium on improved oil
          Fathi, S. J., Austad, T., & Strand, S. (2010). “Smart water” as a  recovery, Tulsa, Oklahoma, 17e21 April. https://doi.org/
            wettability modifier in chalk: The effect of salinity and ionic  10.2118/89474-MS.
            composition. Energy and Fuels, 24(4), 2514e2519. https://  Omekeh, A. V., Friis, H. A., Fjelde, I., & Evje, S. (2012).
            doi.org/10.1021/ef901304m.                    Modeling of ion-exchange and solubility in low salinity wa-
          Fjelde, I., Asen, S. M., & Omekeh, A. V. (2012). Low salinity wa-  ter flooding. In Paper presented at the SPE improved oil recovery
            ter flooding experiments and interpretation by simulations.  symposium, Tulsa, Oklahoma, USA, 14e18 April. https://
            In Paper presented at the SPE improved oil recovery symposium,  doi.org/10.2118/154144-MS.
            Tulsa, Oklahoma, USA, 14e18 April. https://doi.org/  Parkhurst, D. L., & Appelo, C. A. J. (1999). User’s guide to
            10.2118/154142-MS.                            PHREEQC (version 2): A computer program for speciation,
          Garcia, J. E. (2001). Density of aqueous solutions of CO 2 . Low-  batch-reaction, one-dimensional transport, and inverse geochem-
            rence Livermore National Laboratory.          ical calculations, water-resources investigations report. Denver,
          Harvey, A. H. (1996). Semiempirical correlation for henry’scon-  Colo: U.S. Department of the Interior, U.S. Geological
            stants over large temperature ranges. AIChE Journal, 42(5),  Survey.
            1491e1494. https://doi.org/10.1002/aic.690420531.  Peng, D.-Y., & Robinson, D. B. (1976). A new two-constant
          Havre, T. E., Sjöblom, J., & Vindstad, J. E. (2003). Oil/water-  equation of state. Industrial and Engineering Chemistry Fun-
            partitioning and interfacial behavior of naphthenic acids.  damentals,  15(1),  59e64.  https://doi.org/10.1021/
            Journal of Dispersion Science and Technology, 24(6),  i160057a011.
            789e801. https://doi.org/10.1081/DIS-120025547.  Pope, G. A., Wu, W., Narayanaswamy, G., Delshad, M.,
          Hiorth, A., Cathles, L. M., & Madland, M. V. (2010). The impact  Sharma, M. M., & Wang, P. (2000). Modeling relative
            of pore water chemistry on carbonate surface charge and oil  permeability effects in gas-condensate reservoirs with a
   65   66   67   68   69   70   71   72   73   74   75