Page 208 - A Course in Linear Algebra with Applications
P. 208

192               Chapter  S ix:  Linear  Transformations

            12.  (The  third  isomorphism  theorem).  Let  U  and  W  be  sub-
            spaces  of a vector space  V  such that  W  C.  U.  Prove that  U/W
            is a suhspace  oiV/W  and that  (V/W)/(U/W)      ~  V/U.  [Hint:
            define  a  function  T  :  V/W  ->  V/U  by  the  rule  T(v  +  W)  =
            v +  ?7. Show that  T  is a  well defined  linear  transformation  and
            apply  6.3.7].
            13.  Explain  how to  define  a  power  T  m  of  a  linear  operator  T
            on  a vector  space  V,  where  m  >  0.  Then  show that  powers  of
            T  commute.
   203   204   205   206   207   208   209   210   211   212   213