Page 90 - A Course in Linear Algebra with Applications
P. 90

74                   Chapter  Three:  Determinants




                          1     1    1     1       1     1    1     1
                          0    1     2    3        0     1    2     3
               D  =
                        - 2   - 2    3    3        0     0    5     5
                          1   - 2   -2   - 3       0    - 3  -3   - 4
           Next  apply  successively  i? 4 +  3i? 2  and  l/5i?3  to  get

                             1   1 1                     1
                             0   1 2                     2
                      D                    =  - 5
                             0  0   5             0   0   1 1
                             0   0 3              0   0  3   5

           Finally,  use  of  R4  —  3i?3  yields
                                      1   1  1
                                      n
                            D  =  -5  0  1   2     =  -10.
                                      0  0   1
                                      0  0   0

           Example     3.2.2
           Use  row  operations  to  show that  the  following  determinant  is
           identically  equal  to  zero.

                               a +  2    b +  2   c +  2
                               x +  1   y +  1   z  +  1
                               2x  —  a  2y  — b  2z  —  c

                Apply  row  operations  R% +  Ri  and  2R2.  The  resulting
           determinant   is  zero  since  rows  2 and  3  are  identical.
           Example     3.2.3
           Prove that  the  value  of the  n  x  n  determinant

                               2  1  0    • •  0 0  0
                               1  2  1    • •   0 0  0


                               0  0  0    • •   1 2  1
                               0  0  0    • •   0  1  2
   85   86   87   88   89   90   91   92   93   94   95