Page 8 - Acquisition and Processing of Marine Seismic Data
P. 8
Contents
1. Introduction 5. Preprocessing
1.1 Underwater Acoustics 7 5.1 Demultiplexing 242
1.2 Marine Acoustic Methods 9 5.2 Data Loading 243
1.3 Fundamentals of Marine 5.3 Single Trace Section 244
Seismics 25 5.4 Geometry Definition 246
5.5 Band-Pass Filter 253
2. Marine Seismic Data Acquisition 5.6 Gain Recovery 272
5.7 Trace Edit 287
2.1 Components of Marine Seismic
Acquisition 40 5.8 Muting 294
2.2 Air Gun Arrays 62 5.9 f-k Dip Filters 299
2.3 3D Marine Seismic Acquisition 81 5.10 Brute Stack 310
2.4 Specific Acquisition Techniques 100
2.5 Data Acquisition Parameters 112 6. Deconvolution
2.6 QC in Data Acquisition 131 6.1 Convolutional Model 316
6.2 Assumptions for Deconvolution 319
3. Noise in Marine Seismics 6.3 Spiking Deconvolution 324
6.4 Predictive Deconvolution 335
3.1 Operational Noise 174
6.5 Determination of Deconvolution Parameters 337
3.2 Bubble Effect of the
Air Gun 175 6.6 Poststack Deconvolution 349
3.3 Multiple Reflections 177 6.7 Maximum Entropy (Burg) Deconvolution 349
3.4 Swell Noise 180 6.8 Shaping Filters 350
3.5 Bird Noise 183 6.9 Surface Consistent Deconvolution 356
3.6 Inline Waves 185 6.10 QC in Deconvolution 357
3.7 Diffractions 193 7. Suppression of Multiple Reflections
3.8 Guided Waves 193
3.9 Seismic Interference 196 7.1 CDP Stack 368
3.10 Other Noise Types 200 7.2 Predictive Deconvolution 372
7.3 Deconvolution in τ-p Domain 382
4. Fundamentals of Data Processing 7.4 Radon Velocity Filter 383
7.5 Wave Equation Multiple Rejection 388
4.1 Autocorrelation 213
4.2 Crosscorrelation 215 7.6 f-k Filtering 391
4.3 Convolution 215 7.7 Surface-Related Multiple Elimination 394
4.4 Fourier Series 216 7.8 QC in Multiple Suppression 400
4.5 1D Fourier Transform 219
4.6 2D Fourier Transform 222 8. CDP Sort and Binning
4.7 z Transform 230 8.1 CDP Geometry 405
4.8 Hilbert Transform 231 8.2 CDP Fold 409
4.9 τ-p Transform (Slant Stack) 232 8.3 Binning in 3D 411
4.10 Sampling Theory 235 8.4 QC in Sort and Binning 415
vii