Page 132 - Adaptive Identification and Control of Uncertain Systems with Nonsmooth Dynamics
P. 132

128   Adaptive Identification and Control of Uncertain Systems with Non-smooth Dynamics


                        where  ·( denotes the Euclidean norm of a vector φ(X) =[φ 1 (X),··· ,
                              T
                        φ L (X)] .
                           According to the property of Frobenius norm, we can obtain

                                               T
                                              ˜ W φ(X)  F ≤  ˜ W  F  φ(X) .         (8.37)
                           Select a Lyapunov function as

                                                         1   2
                                                   V 1 =     s .                    (8.38)
                                                        2k 0 ϕ 0
                           Differentiating (8.38) and using (8.27), we have

                                    1             T                   r
                                                ˆ
                             ˙ V 1  =  s k 0d(t)[−θsφ (X)φ(X) − k 1s − k 2 |s| sgn(s) − δsgn(s)]
                                   k 0 ϕ 0
                                   +k 0 (W ∗T φ(X) + ε)
                                       2      r+1    
  ∗T     
      1
                                 ≤−k 1s − k 2 |s|  +  1 
 W  φ(X) 
  |s| +  |s|ε − δ |s|
                                                   ϕ 0          F    ϕ 0
                                                                                    (8.39)
                                     1            1    ∗T
                           Since δ 1 ≥  ε N and δ 2 ≥   W  φ(X)  F ,Eq.(8.39) is reduced to
                                     ϕ 0          ϕ 0
                                          2     r+1
                                ˙ V 1  ≤−k 1s − k 2 |s|
                                                                r+1
                                                                          r+1
                                                    2
                                                                        2
                                    ≤−2k 1k 0 ϕ 0 ( 1  1  s ) − k 2 (2k 0 ϕ 0 ) 2 ( 1  1  s ) 2  ,  (8.40)
                                               2 k 0 ϕ 0           2 k 0 ϕ 0
                                    =−k 1V 1 − k 2V 1 ¯ k 3
                                              ¯
                                       ¯
                                                       r+1
                               ¯           ¯                   ¯   r+1
                        where k 1 = 2k 1k 0 ϕ 0, k 2 = k 2 (2k 0 ϕ 0 ) 2 ,and k 3 =  . Then, we can obtain
                                                                    2
                                                          ¯
                                                    ¯
                                               ˙ V 1 + k 1V 1 + k 2V  ¯ k 3  ≤ 0    (8.41)
                                                             1
                           According to Lemma 8.1, it can be concluded that the fast terminal
                        sliding manifold s can converge to zero within a finite time t 1 given by
                                                         ¯
                                                                     ¯
                                                 1       k 1V 1 1− ¯ k 3  (t 0 ) + k 2
                                          t 1 =        ln              .            (8.42)
                                              ¯
                                                               ¯
                                                    ¯
                                              k 1 (1 − k 3 )   k 2
                           From (8.42), we can see that the reaching time t 1 depends on the con-
                        stants k 0, k 1,and ϕ 0.
                           iii) Once the sliding mode surface s = 0 is achieved, it will remain on
                        it and the system (8.11) has the invariant properties. On the sliding surface
                        s = 0, we can conclude
                                                            γ
                                               ˙ e =−λ 1e − λ 2 |e| sgn(e).         (8.43)
   127   128   129   130   131   132   133   134   135   136   137