Page 211 - Adaptive Identification and Control of Uncertain Systems with Nonsmooth Dynamics
P. 211

210   Adaptive Identification and Control of Uncertain Systems with Non-smooth Dynamics


                        Theorem 13.1. Considering the servo system (13.3), thesliding surface(13.17),
                        the adaptive sliding mode controller (13.20), and the parametric adaptive law
                        (13.21). Then, the state variables x 1 and x 2 can track the desired signals x 1d
                        and x 2d .

                        Proof. The following Lyapunov function is used
                                                      1     1
                                                        2
                                                 V = s +      k ˜ 2                (13.22)
                                                      2    2k m
                               ˜
                                        ∗
                        where k = k(t) − k is the parameter estimation error.
                           Then, the derivative of V is given by
                                                                            1
                                    1 ˙
                                                                                   ∗ ˙
                            ˙ V = s˙s +  ˜ ˜                                  (k − k )k.
                                      kk = s[x 3 + a 0 + b 0u −¨x 2d + λ 1 (x 2 −¨x 1d )]+
                                   k m                                     k m
                                                                                   (13.23)
                           Substituting (13.20)into(13.23)yields
                                                                        ∗ ˙
                           ˙ V  = s[(x 3 − z 3 ) + λ 1 (x 2 − z 2 ) − ksg(s)]+  1  (k − k )k
                                                                 k m
                                                          ∗         ∗         1     ∗ ˙
                              = s(  3 + λ 1   2 ) − ks · sg(s) + k s · sg(s) − k s · sg(s) +  (k − k )k
                                                                             k m
                                                                   1 ˙
                                                                ∗
                                      ∗
                              =−s[k sg(s) − (  3 + λ 1   2 )]+ (k − k )[ k − s · sg(s)].
                                                                  k m
                                                                                   (13.24)
                           Next, we will provide the stability analysis according to the following
                        two cases. 1) When |s|≥ μ, it can be concluded that sg(s) = sgn(s),thenwe
                        have
                                                                1
                                      ∗                      ∗    ˙
                               ˙ V ≤−[k −|  3 + λ 1   2 |]|s|+ (k − k )[  k − s · sg(s)].  (13.25)
                                                                k m
                                                              ∗
                           From (13.21), we can conclude ˙ V ≤−[k −|  3 + λ 1   2 |]|s|≤ 0. Hence,
                        the sliding mode variable s will eventually converge to set |s|≤ μ.
                                                               2|s|
                           2) When |s| <μ,wecanobtain sg(s) =       sgn(s) and
                                                              |s|+ μ
                                                           1 ˙
                                ˙ V  ≤−sk   · sg(s) + (k − k )[ k − s · sg(s)]
                                                        ∗
                                                           k m
                                                                1 ˙
                                                             ∗
                                    ≤−sk   (  2|s|  )sgn(s) + (k − k )[ k − s · sg(s)]  (13.26)
                                            |s|+μ               k m
                                                            1 ˙
                                                         ∗
                                    ≤−|s|k   (  2|s|  ) + (k − k )[ k − s · sg(s)]
                                              |s|+μ         k m
                                   ∗
                        with k   = k −|  3 + λ 1   2 |≥ 0. Then, substituting (13.21)into(13.26), it
                        can be easily concluded that ˙ V ≤ 0. Therefore, the sliding mode variable s
   206   207   208   209   210   211   212   213   214   215   216