Page 232 - Adaptive Identification and Control of Uncertain Systems with Nonsmooth Dynamics
P. 232

232   Adaptive Identification and Control of Uncertain Systems with Non-smooth Dynamics


                           From (15.7)and (15.8), the system (15.1) can be rewritten as:
                                    ⎧

                                    ⎪ ˙ x i = f i (¯ x i ,0) + g i ¯ x i ,x α i  x i+1 , 1 ≤ i ≤ n − 1
                                                         i+1
                                    ⎨
                                      ˙ x n = f n (¯ x n ,0) + g n (¯ x n ,v )v     (15.9)
                                                          α i
                                    ⎪
                                      y = x 1
                                    ⎩
                        which is now in the strict-feedback form.
                           To further reformulate system (15.9), we define new system states as [13]
                                           z 1 = y = x 1
                                                             
                     (15.10)
                                           z 2 =˙z 1 = f 1 (x 1 ) + g 1 x 1 ,x α 1
                                                                  2  x 2
                           Then the time derivative of z 2 is calculated as

                                                   α 1          α 1
                                              ∂g 1 x 1 ,x  ∂g 1 x 1 ,x
                                    ∂f 1 (x 1 )    2            2           
    α 1
                            ˙ z 2  =    ˙ x 1 +       ˙ x 1 +     ˙ x 2 x 2 + g 1 x 1 ,x 2  ˙ x 2
                                     ∂x 1        ∂x 1        ∂x 2

                                     ∂f 1  ∂g 1  
          ∂g 1
                                =       +   x 2  f 1 + g 1x 2 +  x 2 + g 1  f 2 + g 2x 3
                                     ∂x 1  ∂x 1             ∂x 2
                                                 α 2
                                = a 2 (¯x 2 ) + b 2 (¯x 2 ,x )x 3                  (15.11)
                                                 3

                                        ∂f 1  ∂g 1  
          ∂g 1             
    α 2
                        where a 2 (¯ x 2 ) =  +  x 2  f 1 + g 1x 2 +  x 2 + g 1 f 2 and b 2 ¯ x 2 ,x 3  =
                                       ∂x 1  ∂x 1              ∂x 2

                          ∂g 1
                            x 2 + g 1 g 2.
                          ∂x 2
                           Again, let the coordinate as z 3 = a 2 + b 2x 3, and then its time derivative
                        is calculated as
                                   2        3
                                     ∂a 2     ∂b 2

                           ˙ z 3  =     ˙ x j +  ˙ x jx 3 + b 2 ˙x 3
                                     ∂x j     ∂x j
                                   j=1     j=1
                                   2
                                                 
                     
           (15.12)
                                      ∂a 2   ∂b 2             ∂b 2
                               =         x 3 +    f j + g jx j+1 +  x 3 +b 2  f 3 + g 3x 4
                                      ∂x j   ∂x j             ∂x 3
                                   j=1

                               = a 3 (¯ x 3 ) + b 3 ¯ x 3 ,x α 3  x 4
                                                 4
                                        2

                                           ∂a 2  ∂b 2               ∂b 2

                        where a 3 (¯ x 3 ) =  +   x 3  f j + g jx j+1 +  x 3 +b 2 f 3 and b 3 ¯ x 3 ,
                                           ∂x j  ∂x j               ∂x 3
                                       j=1

                        x α 3  =  ∂b 2  x 3 +b 2 g 3.

                         4      ∂x 3
                           Similarly, with the derived a i−1 and b i−1, i = 2,··· ,n, we can define
                                                            
     α i−1
                                          z i =a i−1 (¯ x i−1 ) + b i−1 ¯ x i−1 ,x i  x i  (15.13)
                        Then, following the similar mathematical manipulations as shown in the
                        above steps, we can obtain that
                                               ˙ z i = a i (¯ x i ) + b i (¯ x i )x i+1  (15.14)
   227   228   229   230   231   232   233   234   235   236   237