Page 32 - Adaptive Identification and Control of Uncertain Systems with Nonsmooth Dynamics
P. 32

Adaptive Sliding Mode Control of Non-linear Servo Systems With LuGre Friction Model  23


                            Table 2.1 Implementation procedure of the GSO algorithm
                            Step               START
                            1                  Initialization
                            2                  t ← 1
                                                   ∗
                            3                  J(x i (t) ) ←∞
                            4                  For i ← 1tom do
                            5                   Randomly generate solutions(x i (0))
                            6                   J(x i (0)) ← x i (0)
                            7                   l i (0) ← l 0
                            8                   r i (0)← r 0
                            9                  end for
                            10                 main loop
                            11                 repeat
                            12                  update fitness function
                            13                  for i=1tom do
                            14                    J(x i (t)) ← x i (t)
                            15                  end for
                            16                  update luciferin
                            17                  for i=1tom do
                            18                    l i (t) ← (1 − ρ)l i (t − 1) + γJ(x i (t))
                            19                  end for
                            20                  move glowworms
                            21                  for i=1tom do
                                                                i
                            22                    N i (t) ←{j : d ij (t)< r (t);l i (t)< l j (t)} Neighborhood(x i (t))
                                                                d

                            23                    p ij ← (l j (t) − l i (t))  (     (l (t) − l i (t))) moving probability
                                                                       k
                                                                 k∈N i (t)
                            24                    update position and decision region radius
                            25                    for i=1tom do

                            26                    x i (t + 1) ← x i (t) + s((x j (t) − x i (t)) ( 	 x j (t) − x i (t) 	 ))

                                                                     i
                            27                    r i (t + 1) ← min r s ,max 0,r (t) + β(n t − |N i (t)|)
                                                                     d
                            28                    end for
                            29                   end for
                            30                  for i=1tom do
                            31                    if Moved(x i (t))= false then
                            32                      x i (t + 1) ← x i (t)
                            33                    end if
                                                               ∗
                            34                    if J(x i (t)) < J(x i (t) ) then
                                                       ∗
                            35                      x i (t) ← x i (t)
                            36                    else
                                                       ∗
                            37                      x i (t) ← x i (t − 1) ∗
                            38                    end if
                            39                  end for
                            40                  Stop condition ← Check stop condition()
                            41                  t ← t+1
                            42                 until stop condition = false
                                                        ∗
                                                             ∗
                            43                 return J(x i (t) ), x i (t) ,t
   27   28   29   30   31   32   33   34   35   36   37